Langmuir, Vol.35, No.11, 4058-4067, 2019
Switchable Oil-in-Water Emulsions Stabilized by Like-Charged Surfactants and Particles at Very Low Concentrations
A novel CO2/N-2 switchable n-decane-in-water emulsion was prepared, which is stabilized by a CO2/N-2 switchable surfactant [N'-dodecyl-N,N-dimethylacetamidine (DDMA)] in cationic form in combination with positively charged alumina nanoparticles at concentrations as low as 0.01 mM and 0.001 wt %, respectively. The particles do not adsorb at the oil- water interface but remain dispersed in the aqueous phase between surfactant-coated droplets. A critical zeta potential of the particles of ca. +18 mV is necessary for the stabilization of the novel emulsions, suggesting that the electrical double-layer repulsions between particles and between particles and oil droplets are responsible for their stability. By bubbling N-2 into the emulsions, demulsification occurs following transformation of DDMA molecules from the surface-active cationic form to the surface-inactive neutral form and desorption from the oil-water interface. Bubbling CO2 into the demulsified mixtures, cationic DDMA molecules are re-formed, which adsorb to the droplet interfaces, ensuring stable emulsions after homogenization. Compared with Pickering emulsions and traditional emulsions, the amount of switchable surfactant and number of like-charged particles required for stabilization are significantly reduced, which is economically and environmentally benign for practical applications.