화학공학소재연구정보센터
Journal of the American Chemical Society, Vol.141, No.14, 5880-5885, 2019
Solvent-Free, Single Lithium-Ion Conducting Covalent Organic Frameworks
Porous crystalline materials such as covalent organic frameworks and metal-organic frameworks have garnered considerable attention as promising ion conducting media. However, most of them additionally incorporate lithium salts and/or solvents inside the pores of frameworks, thus failing to realize solid-state single lithium-ion conduction behavior. Herein, we demonstrate a lithium sulfonated covalent organic framework (denoted as TpPa-SO3Li) as a new class of solvent-free, single lithium-ion conductors. Benefiting from well-designed directional ion channels, a high number density of lithium-ions, and covalently tethered anion groups, TpPa-SO3Li exhibits an ionic conductivity of 2.7 x 10(-5) S cm(-1) with a lithium-ion transference number of 0.9 at room temperature and an activation energy of 0.18 eV without additionally incorporating lithium salts and organic solvents. Such unusual ion transport phenomena of TpPa-SO3Li allow reversible and stable lithium plating/stripping on lithium metal electrodes, demonstrating its potential use for lithium metal electrodes.