화학공학소재연구정보센터
Journal of Chemical Thermodynamics, Vol.135, 316-329, 2019
The Thermodynamic Difference Rule (TDR) for non-aqueous solvates. Part 2. Review of methodology, investigation and prediction of thermodynamic data for ammoniate solvates, M(p)X(q center dot)nNH(3), routes to expand the database
This paper investigates methods of estimating new and validation of existing standard thermodynamic data, Delta(f)G(o), Delta H-f(o) and S-298(o) for ammoniate solvates, M(p)X(q center dot)nNH(3) at 298 K and describes how to identify errors in existing data. A new approach enabling extension of the whole ammoniate database is presented which involves using thermodynamic data for hydrates, M(p)X(q center dot)nH(2)O and SO2 solvates, M(p)X(q center dot)nSO(2) as and if available. This supplements the normal TDR approach which uses the thermodynamic data for parent compounds, MpXq. Several TDR equations are introduced and used: [Delta(f)G(o) (M(p)X(q center dot)nH(2)O,s) [Delta(f)G(o) (M(p)X(q center dot)nH(2)O,s)]/kJ.mol(-1) = theta(Gf) (H2O, s - s).n = -242.4 n (N = 93, R-2 = 0.998) [Delta H-f(o) (M(p)X(q center dot)nH(2)O,s) - Delta H-f(o) (MpXq,s)]/kJ.mol(-1) = theta(Hf) (H2O, s - s).n = -298.6 n (N = 342, R-2 = 0.999) [S-298(o) (M(p)X(q center dot)nH(2)O,s) - S-298(o) (MpXq,s)]/J.K-1 mol(-1) = theta(So) (H2O, s - s).n = 40.9 n (N = 83, R-2 = 0.978) [Delta H-f(o) (M(p)X(q center dot)nNH(3),s) - Delta H-f(o) (MpXq,s)]/kJ.mol(-1) = theta(Gf) (NH3, s - s).n = -21.0 n (N = 4, R-2 = 0.922) [Delta H-f(o) (M(p)X(q center dot)nNH(3),s) - Delta H-f(o) (MpXq,s)]/kJ.mol(-1) = theta(Gf) (NH3, s - s).n = -104.2 n (N = 277, R-2 = 0.930) [S-298(o) (M(p)X(q center dot)nNH(3),s) - S-298(o) (MpXq,s)]/J.K-1 mol(-1) = theta(So) (NH3, s - s).n = 64.1 n (N = 9, R-2 = 0.989) [Delta(f)G(o) (M(p)X(q center dot)nSO(2),s) - Delta(f)G(o) (MpXq,s)]/kJ.mol(-1) = theta(Gf) (SO2, s - s).n = -299.9 n (N = 2, R-2 = 1.00) [Delta H-f(o) (M(p)X(q center dot)nSO(2),s) - Delta H-f(o) (MpXq,s)]/kJ.mol(-1) = theta(Hf) (SO2, s - s).n = -338.3 n (N = 9, R-2 = 0.999) [S-298(o) (M(p)X(q center dot)nSO(2),s) - S-298(o) (MpXq,s)]/J.K-1 mol(-1) = theta(So) (SO2, s - s).n = 106.9 n (N = 2, R-2 = 0.999) [Delta(f)G(o) (M(p)X(q center dot)nNH(3),s) - Delta(f)G(o) (M(p)X(q center dot)nSO(2),s)]/kJ.mol(-1) = 278.9 n [Delta H-f(o) (M(p)X(q center dot)nNH(3),s) - Delta H-f(o) (M(p)X(q center dot)nSO(2),s)]/kJ.mol(-1) = 234.1 n [S-298(o) (M(p)X(q center dot)nNH(3),s) - S-298(o) (M(p)X(q center dot)nSO(2),s)]/J.K-1 mol(-1) = -42.8 n [Delta(f)G(o) (M(p)X(q center dot)nNH(3),s) - Delta(f)G(o) (M(p)X(q center dot)nH(2)O,s)]/kJ.mol(-1) = 221.4 n [Delta H-f(o) (M(p)X(q center dot)nNH(3),s) - Delta H-f(o) (M(p)X(q center dot)nH(2)O,s)]/kJ.mol(-1) = 194.4 n [S-298(o) (M(p)X(q center dot)nNH(3),s) - S-298(o) (M(p)X(q center dot)nH(2)O,s)]/J.K-1 mol(-1) = 23.2 n. (C) 2019 Elsevier Ltd.