화학공학소재연구정보센터
Journal of Applied Microbiology, Vol.126, No.6, 1879-1890, 2019
Microbiome patterns reveal the transmission of pathogenic bacteria in hilsa fish (Tenualosa ilisha) marketed for human consumption in Bangladesh
Aims: This study conducted bacterial community, virulence and antibiogram profiling inside the hindgut and skin of freshly caught hilsa fish and those sold at markets. Methods and Results: The results of 16S rRNA-based high-throughput sequencing showed a higher number of bacterial genera in marketed fish samples than in fresh fish samples. The total operational taxonomic units, genus counts and diversity index were significantly higher (P > 0.05) in marketed fish, which also had abundant pathogenic bacterial groups. Skin samples had a lower profusion of pathogenic bacteria than gut samples. A total of 52 bacterial isolates from nine species were identified in this study, of which 25 were from a Chittagong market and 22 were from a Dhaka market, whereas only five were from fresh hilsa. The polymerase chain reaction amplification of 12 species-specific virulence genes in the 52 isolates, namely, aer, hly, chxA, toxB, rtxC, sfa, uge, norB, trx, toxA, ipaH, sigA and coa, indicated a high number of positive samples containing Vibrio cholerae, Aeromonas spp., Klebsiella pneumoniae, Escherichia coli and Staphylococcus aureus. Antibiogram profiling of these bacteria against 10 commercial antibiotics showed high-resistance patterns of the isolates against sulfamethoxazole, kanamycin, neomycin, ampicillin and tetracycline. Conclusion: The results reveal the spread of multidrug-resistant bacteria in hilsa fish marketed for human consumption in Bangladesh. Significance and Impact of the Study: This study highlights the risk of spreading environmentally and clinically pathogenic bacteria in fish sold for human consumption in Bangladesh. Such bacteria come from aquatic pollution and poor handling, storage and transportation practices that may predispose fish to major outbreaks of infectious and waterborne diseases.