화학공학소재연구정보센터
International Journal of Hydrogen Energy, Vol.44, No.11, 5324-5333, 2019
Hydrogen purification layered bed optimization based on artificial neural network prediction of breakthrough curves
Artificial neural network has generally been used for a quantity of tasks such as classification, prediction, clustering and association analysis in different application fields. To the best of our knowledge, there are few researches on breakthrough curve used artificial neural network. In this paper, an artificial neural network model is established for breakthrough curves prediction in relation to a ternary components gas with a two-layered adsorbent bed piled up with activated carbon (AC) and zeolite, and an optimization is concluded by the artificial neural network. The performance data which acquired by Aspen model has been utilized for training artificial neural network (ANN) model. The ANN model trained has great competence for making prediction of hydrogen purification performance of PSA cycle with impressive speed and rational accuracy. On the strength of the ANN model, we implemented an optimization for seeking first-rank PSA cycle parameters. The optimization is concentrated on the effect of inlet flow rate, pressure and layer ratio of activated carbon height to zeolite height. Furthermore, this paper shows that the PSA cycle's optimal operation parameters can be obtained by use of ANN model and optimization algorithm, the ANN model has been trained according to the data generated by Aspen adsorption model. (C) 2018 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.