International Journal of Hydrogen Energy, Vol.44, No.12, 6313-6324, 2019
Large-eddy simulation of turbulent autoigniting hydrogen lifted jet flame with a multi-regime flamelet approach
In this work, the combustion model is focused on to describe a multitude of reaction regimes that are deemed to affect the flame stabilization. For this purpose, an efficient flame indicator is formulated to differentiate the differing flame structures and make use of flamelet chemistry that accounts for autoignition and multi-regime reactions. The large eddy simulation with this methodology is carried out to compute a turbulent lifted hydrogen-nitrogen flame in vitiated coflow. The canonical flame models of a laminar premixed flame and an unsteady counterflowing flame have been used to simulate the flamelet structure at different regimes. Present model improves the prediction of mean and rms profiles for temperature and species mass fraction in the comparison with experiments and a reference simulation, adopting the single-regime flamelet. The computed results also demarcate the formation of a triple flame structure at the flame base, where combustion develops into the premixed reaction that extends to the fuel-lean and rich branches. The counterflow mixing mode with autoignition is identified as the major mechanism for stabilization and is responsible for the propagating premixed zone above the liftoff height. The developed multi-regime flamelet approach properly accounts for the interactive different modes of burning. (C) 2019 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.