화학공학소재연구정보센터
Energy & Fuels, Vol.33, No.3, 2453-2466, 2019
Catalytic Gasification of Biomass in Dual-Bed Gasifier for Producing Tar-Free Syngas
Process development for the production of syngas by gasification of biomass, a carbon-neutral source of energy, has been researched very extensively in the recent past. One of the technical challenges in biomass gasification is to produce clean syngas with no tar. Tar removal by employing secondary bed is a solution, but it faces higher cost and reliability issues. Hence, extensive work is directed to produce syngas with no tar formation in the gasifier bed itself, by employing a suitable catalyst or other options. In the present work, a dual fluidized bed process for catalytic gasification of biomass is proposed for the production of high-quality syngas. This process employs an alkali-impregnated alumina or silica-alumina catalyst that eliminates tar formation completely while increasing the H-2-to-CO molar ratio to more than 10. The catalyst is able to completely gasify the volatiles and solid char generated from biomass in the temperature range of 500-750 degrees C, at near atmospheric pressure, with catalyst-to-biomass ratio of 10-20 and steam-to-biomass ratio of 1.0. The present work established for the first time a new solid solid catalytic reaction mechanism based on the novel concept of "migratory catalysis", which is supported by in-depth microreactor studies and phase identification by in situ X-ray diffraction (XRD) and conventional XRD. It has been established in this work that potassium from the catalyst particles becomes mobile and migrates to feed carbon particles through mass transfer of volatile potassium intermediate, which has low vapor pressure, <2.4 x 10(-2) Pa, at temperature of 600-910 degrees C, but sufficient enough for required mass transfer at gasification conditions. However, potassium migrates back to the catalyst particles by the reaction of KOH with carbon dioxide in the reaction environment. Thus, there is no effective loss of potassium (K) from the bed. Such migration of intermediate species between solid catalyst and solid feed particles demonstrates a new pathway of catalysis among solid particles.