화학공학소재연구정보센터
Energy, Vol.175, 1100-1120, 2019
Comprehensive multivariable analysis of the possibility of an increase in the electrical efficiency of a modern combined cycle power plant with and without a CO2 capture and compression installations study
The main objective of the presentstudy is to determine whether the thermodynamic efficiency of a modern combined cycle power plant (CCPP) with steam reheating can be increased when using designs both with and without CO2 separation and compression installations. The relatively high costs of a steam cycle compared to a gas turbine (GT) have motivated the present direction of efficiency research in this area. Therefore, in all systems analyzed in this work, the same structure of heat recovery steam generator (HRSG) was assumed, producing fresh and secondary steam, with the parameters 600 degrees C/18 MPa and 600 degrees C/4 MPa, respectively, and a constant GT exhaust gas temperature of 630 degrees C. A methodology for modeling the operation of a GT within a wide range of compression ratios beta (10 <= beta <= 100) has been developed. Power plants that employ various types of open-air cooling (convective, film, or transpiration) in order to cool the air in a steam cycle (SC) were analyzed. These power plants were equipped with closed steam and closed air cooling, sequential combustion (reheat), and the ability to capture CO2 from the flue gas. For all analyzed systems, a uniform methodology for determining the efficiency, the stream of coolant used in a GT, combustor outlet temperature (COT), and unitary CO2 emission was developed. These parameters were determined as a function of the pressure ratio, beta. It is important to show the limitation of the efficiency increase that results from the COT, beta level, the cooling method, and the structure of the CCPP. This paper shows that the power plant equipped with sequential combustion and steam cooling has the greatest potential for an increase in efficiency from eta(el.n) = 61.5% (beta = 30) and eta(el.n)= 65.8% (beta = 60) to eta(el.n)= 67.9% (beta =100), all at COT <= 1550 degrees C. Assuming COT= 1900 degrees C, the CCPP equipped with only closed-steam gas turbine cooling will reach the efficiency eta(el.n)= 65.5% at beta = 76, and the system with film cooling will reach an efficiency eta(el.n) = 63.56% at beta = 66. At beta = 30, these CCPPs achieve efficiencies eta(el.n) = 61.7% (COT =1550 degrees C) and eta(el.n) = 61.3% (COT = 1580 degrees C), respectively. (C) 2019 Elsevier Ltd. All rights reserved.