Chemical Engineering Journal, Vol.368, 618-626, 2019
Fabrication of microporous polyimide networks with tunable pore size and high CO2 selectivity
Developing porous organic polymer materials with plenty micropores is of great importance for highly selective CO2 capture under ambient conditions. Here, to tune the pore size, two novel microporous hyperbranched polyimide networks, in which the distance between the polymer skeleton and crosslinking points is different, are successfully prepared by a two-step pathway combining polymerization and crosslinking reaction. It is intriguingly found that both porosity and CO2 sorption performance of microporous hyperbranched polyimides can be finely tuned by reducing the distance between the polymer skeleton and crosslinking points from PEPHQDA-HBPI-CL to PEQDA-HBPI-CL. The micropore size decrease from 1.18 nm to 0.86 nm, and CO2 adsorption capacity increase from 6.38 to 6.51 wt% (298 K and 1 bar). More excitingly, the PEQDA-HBPI-CL demonstrates the high CO2/N-2 and CO2/CH4 selectivity up to 109 and 15 (273 K, 1 bar) according to the Henry's law, which are superior to those of many other microporous organic polymers and among the best results for porous inorganic/organic materials. This work reveals that the shorter-distance between the polymer skeleton and crosslinking points is in favor of fabricating microporous hyperbranched polyimide networks with abundant smaller micropore and high CO2 selectivity, which are crucial importance for the CO2 capture and storage.