Applied Microbiology and Biotechnology, Vol.103, No.8, 3477-3485, 2019
A simple biosynthetic pathway for 2,3-butanediol production in Thermococcus onnurineus NA1
The biosynthetic pathway of 2,3-butanediol (2,3-BDO) production from pyruvate under anaerobic conditions includes three enzymes: acetolactate synthase (ALS), acetolactate decarboxylase (ALDC), and acetoin reductase (AR). Recently, in anaerobic hyperthermophilic Pyrococcus furiosus, it has been reported that acetoin, a precursor of 2,3-BDO, is produced from pyruvate by ALS through a temperature-dependent metabolic switch. In this study, we first attempted to produce 2,3-BDO from Thermococcus onnurineus NA1 using a simple biosynthetic pathway by two enzymes (ALS and AR) at a high temperature. Two heterologous genes, acetolactate synthase (alsS) from Pyrococcus sp. NA2 and alcohol dehydrogenase (adh) from T. guaymacensis, were introduced and expressed in T. onnurineus NA1. The mutant strain produced approximately 3.3 mM 2,3-BDO at 80 degrees C. An acetyl-CoA synthetase III (TON_1001) was further deleted to enhance 2,3-BDO production, and the mutant strain showed a 25% increase in the specific production of 2,3-BDO. Furthermore, when carbon monoxide (CO) gas was added as a reductant, specific production of 2,3-BDO increased by 45%. These results suggest a new biosynthetic pathway for 2,3-BDO and demonstrate the possibility of T. onnurineus NA1 as a platform strain for 2,3-BDO production at high temperatures.