Korean Journal of Chemical Engineering, Vol.36, No.5, 729-739, May, 2019
Enhancement of catalytic activity of lipase-immobilized Fe3O4-chitosan microsphere for enantioselective acetylation of racemic 1-phenylethylamine
E-mail:,
Racemic 1-phenylethylamine was resolved by enantiomer selective acetylation using Fe3O4-chitosan microsphere (CTS)-glutaraldehyde-lipase in a solvent-free system under an alternating magnetic field. Magnetic chitosan microspheres (Fe3O4-CTS) were prepared via chemical co-precipitation and cross-linked with lipase using glutaraldehyde to form Fe3O4-CTS-glutaraldehyde-lipase particles. The magnetic, physicochemical, and textural characteristics of Fe3O4-CTS-glutaraldehyde-lipase particles were assessed by Fourier transform infrared spectroscopy, X-ray diffraction, and scanning electron microscopy. The optimal immobilization conditions were 2.4mg/mL lipase, 10mg/mL Fe3O4- CTS-glutaraldehyde, pH 8.5, 35 oC, 3 h. The loading amount of lipase and the specific activity got to 132mg/g carrier and 48U/g. The optimal reaction conditions of the acylation reaction using Fe3O4-CTS-glutaraldehyde-lipase were 300mmol/L 1-phenylethylamine, 150mg immobilized lipase, 2mL vinyl acetate, 12.6 ⊥g rotating speed, 40 oC, 8 h. The activity of the Fe3O4-CTS-glutaraldehyde-lipase particles and conversion were improved when they were exposed to an external alternating magnetic field. The optimum magnetic field was 12 Gs (500 Hz). The conversion, enantiomeric excess of (R)-N-(1-phenylethyl)acetamide, and E value reached 41.8%, 98.4%, and 264, respectively. Fe3O4-CTS-glutaraldehyde- lipase could be reused seven times. A kinetic model of the immobilized lipase-catalyzed resolution of 1- phenylethylamine was set up based on the ping-pong bi좻bi mechanism. The kinetic constants were Vmax=1.62⊥10?2 mM/min, KA=2.84⊥10?4mM, and KB=5.8⊥10?1mM. The model data fit well with the experimental data.
Keywords:Alternating Magnetic Field;Enantiomer Selective Acetylation;Fe3O4-CTS-glutaraldehyde-lipase;Solvent-free System;(R)-N-(1-phenylethyl)acetamide
- Cammenberg M, Hult K, Park S, Chembiochem, 7(11), 1745 (2006)
- Boezio AA, Pytkowicz J, Cote A, Charette AB, J. Am. Chem. Soc., 35(12), 14260 (2004)
- Hanson RL, Davis BL, Chen YJ, Goldberg SL, Parker WL, Tully TP, Montana MA, Patal RN, Adv. Synth. Catal., 350, 1367 (2008)
- Artis DR, Cho IS, Muchowski JM, Can. J. Chem., 70(6), 1838 (2010)
- Latroche M, Surble S, Serre C, Mellot-Draznieks C, Llewellyn PL, Lee JH, Chang JS, Jhung SH, Ferey G, Angew. Chem.-Int. Edit., 45(48), 8227 (2010)
- Altava B, Burguete MI, Carbo N, Escorihuela J, Luis SV, Tetrahedron. Asymmetr., 21, 982 (2010)
- Jaeger KE, Eggert T, Curr. Opin. Biotechnol., 13(4), 390 (2002)
- Hasan F, Shah AA, Hameed A, Enzyme Microb. Technol., 39(2), 235 (2006)
- Jaeger KE, Reetz MT, Trends Biotechnol., 16(9), 396 (1998)
- Yahya ARM, Anderson WA, Moo-Young M, Enzyme Microb. Technol., 23(7-8), 438 (1998)
- Allenmark S, Ohlsson A, Chirality, 4(2), 98 (1992)
- Wu JC, Hou RL, Leng Y, Chow Y, Li RJ, Talukder MMR, Choi WJ, Biotechnol. Bioproc. E, 11(3), 211 (2006)
- Ditrich K, Cheminform., 39(46), 2283 (2008)
- Adnani A, Basri M, Chaibakhsh N, Carbohydr. Res., 346(4), 472 (2011)
- Mustafa A, Karmali A, Abdelmoez W, J. Clean Prod., 137, 953 (2016)
- Jaiswal KS, Rathod VK, Ultrason. Sonochem., 40(PtA), 727 (2018)
- Uthoff F, Reimer A, Liese A, Groger H, Sustain Chem. Pharm., 5, 42 (2017)
- Gilani SL, Najafpour GD, Moghadamnia A, Kamaruddin AH, J. Mol. Catal. B-Enzym., 133, 144 (2016)
- Xie WL, Wang JL, Biomass Bioenerg., 36, 373 (2012)
- Romdhane BB, Romdhane ZB, Gargouri A, Belghith H, J. Mol. Catal. B-Enzym., 68(3-4), 230 (2011)
- Talbert JN, Wang LS, Duncan B, Jeong Y, Andler SM, Rotello VM, Goddard JM, Biomacromolecules, 15(11), 3915 (2014)
- Qu ZY, Hu FL, Chen KM, Duan ZQ, Gu HC, Xu H, J. Colloid Interface Sci., 398, 82 (2013)
- Hwang ET, Gu MB, Eng. Life Sci., 13(1), 49 (2013)
- Ye P, Xu ZK, Che AF, Wu J, Seta P, Biomaterials, 26(25), 6394 (2005)
- Romdhane BB, Romdhane ZB, Gargouri A, Belghith H, J. Mol. Catal. B-Enzym., 68(3-4), 230 (2011)
- Manzano MFG, Igarzabal CIA, J. Mol. Catal. B-Enzym., 72(1-2), 28 (2011)
- Wang XY, Jiang XP, Li Y, Zeng S, Zhang YW, Int. J. Biol. Macromol., 75, 44 (2015)
- Noureddini H, Gao X, Philkana RS, Bioresour. Technol., 96(7), 769 (2004)
- Kuo CH, Liu YC, Chang CMJ, Chen JH, Chang C, Shieh CJ, Carbohydr. Polym., 87(4), 2538 (2012)
- Dodi G, Hritcu D, Lisa G, Popa MI, Chem. Eng. J., 203, 130 (2012)
- Bayramoglu G, Yilmaz M, Yakup AM, Bioprocess. Biosyst. Eng., 33(4), 439 (2010)
- Tavano OL, Fernandez-Lafuente R, Goulart AJ, Monti R, Process Biochem., 48(7), 1054 (2013)
- Bezbradica DI, Mateo C, Guisan JM, J. Mol. Catal. B-Enzym., 102(14), 218 (2014)
- Zhi J, Wang YJ, Lu YC, Ma JY, Luo GS, React. Funct. Polym., 66(12), 1552 (2006)
- Denkbas EB, Kilicay E, Birlikseven C, Ozturk E, React. Funct. Polym., 50(3), 225 (2002)
- Xie WL, Wang JL, Biomass Bioenerg., 36, 373 (2012)
- Ting WJ, Tung KY, Giridhar R, Wuw T, J. Mol. Catal. B-Enzym., 42(1), 32 (2006)
- Gros F, Baup S, Aurousseau M, Powder Technol., 183(2), 152 (2008)
- Zheng MG, Su ZG, Ji XY, Ma GH, Wang P, Zhang SP, J. Biotechnol., 168, 212 (2013)
- XJ, Schellekens AJ, van Ommering K, van Ijzendoorna LJ, Prins MW, Biosens. Bioelectron., 24(7), 1937 (2009)
- Guo PM, Huang FH, Huang QD, Zheng C, J. Am. Oil Chem. Soc., 55, 561 (2013)
- Chen CS, Fujimoto Y, Girdaukas G, Sih CJ, J. Am. Chem. Soc., 104(25), 7294 (1982)
- Bradford MM, Anal. Biochem., 72(s1-2), 248 (1976)
- Baghban A, Heidarizadeh M, Doustkhah E, Rostamnia S, Rezaei PF, Int. J. Biol. Macromol., 103, 1194 (2017)
- Pan CL, Hu B, Li W, Sun Y, Ye H, Zeng XX, J. Mol. Catal. B-Enzym., 61(3-4), 208 (2009)
- Zhang QK, Kang JQ, Yang B, Zhao LZ, Hou ZS, Tang B, Chinese. J. Catal., 37(3), 389 (2016)
- Yadav GD, Trivedi AH, Enzyme Microb. Technol., 32(7), 783 (2003)
- Paivio M, Perkio P, Kanerva LT, Tetrahedron: Asymmetry, 23(3-4), 230 (2012)