화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.36, No.5, 660-668, May, 2019
Decomposition of ammonium dinitramide-based liquid propellant over Cu/hexaaluminate pellet catalysts
E-mail:
We investigated the influence of a copper loading strategy over hexaaluminate on catalytic performance during the decomposition of an ammonium dinitramide (ADN)-based liquid propellant. Powder-type and pellet-type Cu/hexaaluminate catalysts were prepared and their chemico-physical properties were characterized by N2 adsorption, XRD, and XRF. A Cu-hexa-pellet-A catalyst in which copper atoms are positioned inside the hexaaluminate matrix showed the lowest decomposition onset temperature in decomposition of an ADN-based propellant. The excellent activity of the Cu-hexa-pellet-A catalyst is ascribed to copper being well incorporated in the hexaaluminate matrix, and the dispersion of the copper is higher than that in two other catalysts. When a thermal shock was applied at a high temperature of 1,200 °C prior to catalyst reuse, physical properties such as surface area, average pore diameter, and the compressive strength of the fresh catalyst did not deteriorate remarkably after five times repetitive reuse and heat treatment. Consequently, the Cu-hexa-pellet-A catalyst was confirmed to be a catalyst that has excellent activity and heat resistance simultaneously in decomposition of an ADN-based propellant.
  1. Nobuhiko T, Tetsuya M, Katsumi F, Mitsuru N, Shigenori S, Akinori Y, Mitsubishi Heavy Ind. Tech. Rev., 48, 44 (2011)
  2. McLean CH, Deininger WD, Joniatis J, 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, AIAA 2014-3481, 1 (2014).
  3. Ide Y, Takahashi T, Iwai K, Nozoe K, Habu H, Tokudome S, Procedia Eng., 99, 332 (2015)
  4. Amrousse R, Katsumi T, Itouyama N, Azurna N, Kagawa H, Hatai K, Ikeda H, Hori K, Combust. Flame, 162(6), 2686 (2015)
  5. Wingborg N, Larsson A, Elfsberg M, Appelgren P, 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, AIAA 2005-4468, 1 (2005).
  6. Jang HG, Sul MJ, Shim JS, Park YC, Cho SJ, J. Ind. Eng. Chem., 63, 237 (2018)
  7. Yang R, thakre P, Yang V, Combust. Explo. Shock Waves, 41, 657 (2005)
  8. Kleimark J, Delanoe R, Demaire A, Brinck T, Theor. Chem. Acc., 132, 1 (2013)
  9. Courtheoux L, Amariei D, Rossignol S, Kappenstein C, Appl. Catal. B: Environ., 62(3-4), 217 (2006)
  10. Vyazovkin S, Wight CA, J. Phys. Chem. A, 101(31), 5653 (1997)
  11. Gronland TA, Westerberg B, Bergman G, Anflo K, Brandt J, Lyckfeldt O, Agrell J, Ersson A, Jaras S, Boutonnet M, Wingborg N, US Patent, 7,137,244 B2 (2006).
  12. Amrousse R, Hori K, Fetimi W, Farhat K, Appl. Catal. B: Environ., 127, 121 (2012)
  13. Heo S, Hong S, Jeon BK, Li C, Kim JM, Jo YM, Kim W, Jeon JK, J. Nanosci. Nanotechnol., 18, 353 (2018)
  14. Hong S, Heo S, Li C, Jeon BK, Kim JM, Jo YM, Kim W, Jeon JK, J. Nanosci. Nanotechnol., 18, 1427 (2018)
  15. Machida M, Eguchi K, Arai H, J. Catal., 120, 377 (1989)
  16. Sidwell RW, Zhu HY, Kee RJ, Wickham DT, Combust. Flame, 134(1-2), 55 (2003)
  17. Hong S, Heo S, Kim W, Jo YM, Park YK, Jeon JK, Catalysts, 9, 80 (2019)
  18. Gardner TH, Shekhawat D, Berry DA, Smith MW, Salazar M, Kugler EL, Appl. Catal. A: Gen., 323, 1 (2007)
  19. Machida M, Eguchi K, Arai H, J. Catal., 123, 477 (1990)
  20. Tian M, Wang XD, Zhang T, Catal. Sci. Technol., 6, 1984 (2016)
  21. Lietti L, Cristiani C, Groppi G, Forzatti P, Catal. Today, 59(1-2), 191 (2000)
  22. Jang BWL, Nelson RM, Spivey JJ, Ocal M, Oukaci R, Marcelin G, Catal. Today, 47(1-4), 103 (1999)
  23. Yeh TF, Lee HG, Chu KS, Wang CB, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 384, 324 (2004)
  24. Thommes M, Kaneko K, Neimark AV, Olivier JP, Rodriguez-Reinoso F, Rouquerol J, Sing KSW, Pure Appl. Chem., 87, 1051 (2015)
  25. Kim S, Lee DW, Lee JY, Eom HJ, Lee HJ, Cho IH, Lee WY, J. Mol. Catal. A-Chem., 335(1-2), 60 (2011)
  26. Sohn JM, Woo SI, Korean Chem. Eng. Res., 45(3), 209 (2007)