화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.29, No.4, 264-270, April, 2019
X-ray 회절의 반치전폭(FWHM)을 이용한 Y-TZP세라믹스에서 반복 열응력에 의한 입계크기 분석
Grain Size Analysis by Hot-Cooling Cycle Thermal Stress at Y-TZP Ceramics using Full Width at Half Maximum(FWHM) of X-ray Diffraction
E-mail:,
As a case study on aspect ratio behavior, Kaolin, zeolite, TiO2, pozzolan and diatomaceous earth minerals are investigated using wet milling with 0.3 pai media. The grinding process using small media of 0.3 pai is suitable for current work processing applications. Primary particles with average particle size distribution D50, ~6 μm are shifted to submicron size, D50 ~0.6 μm, after grinding. Grinding of particles is characterized by various size parameters such as sphericity as geometric shape, equivalent diameter, and average particle size distribution. Herein, we systematically provide an overview of factors affecting the primary particle size reduction. Energy consumption for grinding is determined using classical grinding laws, including Rittinger's and Kick's laws. Submicron size is obtained at maximum frictional shear stress. Alterations in properties of wettability, heat resistance, thermal conductivity, and adhesion increase with increasing particle surface area. In the comparison of the aspect ratio of the submicron powder, the air heat conductivity and the total heat release amount increase 68 % and 2 times, respectively.
  1. Hannink RJH, Kelly PM, Muddle BC, J. Am. Ceram. Soc., 83, 462 (2000)
  2. Hannink RJH, Kelly PM, Johnson KA, Pascoe RT, Gravie RC, Microstructural Changes during Isothermal Ageing of a Calcia Partially Stabilized Zirconia, p.116, American Ceramic Society, Ohio, USA (1981).
  3. Heuer AH, Lanteri V, Farmer AC, Chaim R, Lee RR, Kibbel BW, Dickerson RM, J. Mater. Sci., 24, 124132 (1989)
  4. Bayanova TB, Petrology, 14, 187 (2006)
  5. Duwez P, Odell F, Brown FH, J. Am. Ceram. Soc., 35, 107 (1952)
  6. Arndt B, Noei H, Keller TF, Muller P, Vonk V, Nenning A, Opitz AK, Fleig J, Rutt U, Stierle A, Thin Solid Films, 603, 56 (2016)
  7. Gupta TK, Lange FF, Bechtold J, J. Mater. Sci., 13, 1464 (1978)
  8. Kobayasi K, Kuwajima H, Misaki T, Solid State Ion., 3/4, 489 (1981)
  9. Sato T, Shimada M, J. Am. Ceram. Soc., 22, 2277 (1987)
  10. Tsukuma K, Shimada M, J. Mater. Sci., 20, 1178 (1985)
  11. Kril CE, Birringer R, Philos. Mag. A, 77, 16211 (1998)
  12. ASTM E165/E165M-12, ASTM International, 03.03, Weast Conshohocken, Pennsylvania, USA (2012).
  13. Evans AG, J. Am. Ceram. Soc., 73, 187 (1990)
  14. Meenaloshini S, Sing YW, Mohsen G, Dinesh R, Int. J. Nanoelect. & Mat., 8, 61 (2015).
  15. Scott HG, J. Mater. Sci., 10, 1527 (1975)
  16. Purushotham E, J. Eng. Sci. and Tech. Rev., 6, 83 (2013).
  17. Cullity BD, Elements of X-ray Diffraction, p.284, Addison-Wesley, Massachusetts USA (1978).
  18. Nakamura J, Amaya M, Nagase F, Fuketa T, J. Nucl. Sci. Technol., 46, 944 (2008)
  19. Suzuki H, Akita K, Misawa H, Jpn. J. Appl. Phys., 42, 2876 (2003)
  20. Scott HG, J. Mater. Sci., 10, 1527 (1975)
  21. Hannink RJH, Stubicon VS, J. Am. Ceram. Soc., 66, 260 (1983)
  22. Kobayashi K, Kuwajima H, Misaki T, Solid State Ion., 3/4, 489 (1981)