화학공학소재연구정보센터
Polymer(Korea), Vol.43, No.2, 224-234, March, 2019
고분자 나노복합체 박막의 결정화 거동
Crystallization Behavior of Polymer Nanocomposite Thin Film
E-mail:
초록
고분자가 박막 형태로 존재하거나 혹은 나노입자를 함유한 나노복합체의 경우 벌크 상태와는 다른 독특한 결정화 거동을 보인다. 본 연구에서는 벌크 상태와 박막 상태, 그리고 나노입자를 함유한 나노복합체 박막 형태의 고분자 매트릭스의 결정화 거동에 대한 분석이 X-선 회절, 다양한 현미경, 고속 시차주사열량계 등의 방법을 통해 수행되었다. 친수성 나노 입자가 존재하고 박막의 두께가 감소할수록 결정화도와 결정화 온도가 감소하였다. 또한 소수성 나노입자가 나노복합체 박막의 결정화 거동에 거의 영향을 끼치지 않는 것과는 달리 spherurite 구조의 형성이 억제되고 edge-on lamellar에서 flat-on lamellar 구조로의 층 상전이 현상 또한 강하게 억제되었다. 본 연구 결과는 입자와 매트릭스간 상호 작용 및 공간적 제한이 고분자 결정화에 어떻게 영향을 미치는지, 미세 구조 설계에 어떻게 사용되는지 이해하는 데 도움이 될 것이라 생각된다.
In the case of nanoparticles containing polymer nanocomposite or in the form of thin film, they exhibit a unique crystallization behavior different from the bulk state. In this study, the crystallization behaviors of polymer matrix in the form of nanocomposite thin film, homogeneous thin film, and bulk polymer were analyzed by X-ray diffraction and various microscopy techniques. The crystallinity and the crystallization temperature decreased in the presence of hydrophilic nanoparticles with thinner film thickness. In addition, the formation of the spherurite structure was suppressed and the transition from the edge-on to the flat-on lamellar structure was strongly inhibited while hydrophobic nanoparticles had little effect on the crystallization behavior of the nanocomposite thin film. We believe that the results help to understand how the interactions between particles and matrix and confined geometry affect the crystallization of polymers and how they are utilized to design microstructures.
  1. Liu YX, Chen EQ, Coord. Chem. Rev., 254, 1011 (2010)
  2. Toda A, Okamura M, Taguchi K, Hikosaka M, Kajioka H, Macromolecules, 41(7), 2484 (2008)
  3. Yang P, Han YC, Langmuir, 25(17), 9960 (2009)
  4. Reiter G, Sommer U, Phys. Rev. Lett., 80, 3771 (1998)
  5. Yuryev Y, Wood-Adams P, Heuzey MC, Dubois C, Brisson J, Polymer, 49(9), 2306 (2008)
  6. Reiter G, Castelein G, Sommer JU, Rottele A, Thurn-Albrecht T, Phys. Rev. Lett., 87, 226101 (2001)
  7. Basire C, Ivanov DA, Phys. Rev. Lett., 85, 5587 (2000)
  8. Ferreiro V, Douglas JF, Warren J, Karim A, Phys. Rev. E, 65, 051606 (2002)
  9. Hobbs JK, Register RA, Macromolecules, 39(2), 703 (2006)
  10. Capitan MJ, Rueda DR, Ezquerra TA, Macromolecules, 37(15), 5653 (2004)
  11. Reiter G, Castelein G, Hoerner P, Riess G, Blumen A, Sommer JU, Phys. Rev. Lett., 83, 3844 (1999)
  12. Ferreiro V, Douglas JF, Warren JA, Karim A, Phys. Rev. E, 65, 042802 (2002)
  13. Reiter G, Sommer JU, J. Chem. Phys., 112(9), 4376 (2000)
  14. Sommer JU, Reiter G, J. Chem. Phys., 112(9), 4384 (2000)
  15. Wei YH, Pan CY, Li BY, Han YC, J. Chem. Phys., 126, 104902 (2007)
  16. Wang Y, Rafailovich M, Sokolov J, Gersappe D, Araki T, Zou Y, Kilcoyne ADL, Ade H, Marom G, Lustiger A, Phys. Rev. Lett., 96, 028303 (2006)
  17. Wang MT, Braun HG, Meyer E, Macromolecules, 37(2), 437 (2004)
  18. Schonherr H, Frank CW, Macromolecules, 36(4), 1188 (2003)
  19. Schonherr H, Frank CW, Macromolecules, 36(4), 1199 (2003)
  20. Cho Y, Lee JB, Hong J, Chem. Eng. J., 221, 32 (2013)
  21. Waddon AJ, Petrovic ZS, Polym. J., 34, 876 (2002)
  22. Frech R, Chintapalli S, Solid State Ion., 85(1-4), 61 (1996)
  23. Tjong SC, Mat. Sci. Eng. R, 53, 73 (2006)
  24. Khan J, Harton SE, Akcora P, Benicewicz BC, Kumar SK, Macromolecules, 42(15), 5741 (2009)
  25. Kim J, Kwak S, Hong SM, Lee JR, Takahara A, Seo Y, Macromolecules, 43(24), 10545 (2010)
  26. Fornes TD, Paul DR, Polymer, 44(14), 3945 (2003)
  27. Kim SH, Ahn SH, Hirai T, Polymer, 44(19), 5625 (2003)
  28. Kuo MC, Huang JC, Chen M, Mater. Chem. Phys., 99(2-3), 258 (2006)
  29. Weng WG, Chen GH, Wu DJ, Polymer, 44(26), 8119 (2003)
  30. Buttner M, Belser T, Oelhafen P, J. Phys. Chem. B, 109(12), 5464 (2005)
  31. Ratna D, Divekar S, Samui AB, Chakraborty BC, Banthia AK, Polymer, 47(11), 4068 (2006)
  32. Strawhecker KE, Manias E, Chem. Mater., 15, 844 (2003)
  33. Gao SY, Koh YP, Simon SL, Macromolecules, 46(2), 562 (2013)
  34. Mohamad AA, Haliman H, Sulaiman MA, Yahya MZA, Ali AMM, Ionics, 14, 59 (2008)
  35. Chen JN, Peng TY, Fan K, Xia JB, J. Mater. Chem., 21, 16448 (2011)
  36. Chandrasekaran R, Sathiyamoorthi R, Selladurai S, Ionics, 15, 703 (2009)
  37. Chu PP, Reddy MJ, Kao HM, Solid State Ion., 156(1-2), 141 (2003)
  38. Massa MV, Dalnoki-Veress K, Forrest JA, Eur. Phys. J. E, 11, 191 (2003)
  39. Frank CW, Rao V, Despotopoulou MM, Pease RF, Hinsberg WD, Miller RD, Rabolt JF, Science, 273(5277), 912 (1996)
  40. Dalnoki-Veress K, Forrest JA, Massa MV, Pratt A, Williams A, J. Polym. Sci. B: Polym. Phys., 39(21), 2615 (2001)
  41. Ma Y, Hu WB, Reiter G, Macromolecules, 39(15), 5159 (2006)
  42. Pearce R, Vancso GJ, Macromolecules, 30(19), 5843 (1997)
  43. Kovacs AJ, Straupe C, Faraday Discuss., 68, 225 (1979)
  44. Madathingal RR, Wunder SL, Macromolecules, 44(8), 2873 (2011)
  45. Despotopoulou MM, Frank CW, Miller RD, Rabolt JF, Macromolecules, 29(18), 5797 (1996)
  46. Sato T, Watanabe H, Osaki K, Macromolecules, 29(19), 6231 (1996)
  47. Lai C, Ayyer R, Hiltner A, Baer E, Polymer, 51(8), 1820 (2010)
  48. Park M, Kim H, Youngblood JP, Han SW, Verplogen E, Hart AJ, Nanotechnology, 22, 415703 (2011)
  49. Chatterjee T, Yurekli K, Hadjiev VG, Krishnamoorti R, Adv. Funct. Mater., 15(11), 1832 (2005)
  50. Chen HL, Porter RS, Thermochim. Acta, 243(2), 109 (1994)
  51. Di Lorenzo ML, Sajkiewicz P, La Pietra P, Gradys A, Polym. Bull., 57(5), 713 (2006)
  52. Ma CL, Ishihara S, Soejima H, Nishiyama N, Inoue A, Mater. Trans., 45, 1802 (2004)
  53. Cheng SZD, Chen JH, Zhang AQ, Heberer DP, J. Polym. Sci. B: Polym. Phys., 29, 299 (1991)
  54. Ping DH, Hono K, Kanekiyo H, Hirosawa S, J. Appl. Phys., 85, 2448 (1999)
  55. Xu WB, Zhai HB, Guo HY, Zhou ZF, Whitely N, Pan WP, J. Therm. Anal. Calorim., 78, 101 (2004)
  56. Paul DR, Robeson LM, Polymer, 49(15), 3187 (2008)