화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.73, 297-305, May, 2019
Photocatalytic degradation of organic dyes using WO3-doped ZnO nanoparticles fixed on a glass surface in aqueous solution
E-mail:,
The present study aimed at evaluating the application of tungsten oxide-doped zinc oxide nanoparticles for the photocatalytic degradation of Direct Blue 15 dye in a sequencing batch reactor. ZnO nanoparticles were doped with WO3 through hydrothermal synthesis method. To characterize the synthesized nanoparticles scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, atomic force microscopy, zeta potential analysis, and ultraviolet-visible spectroscopy were used. The radiation source in this study was five 6?W UV lamps. Operational parameters affecting the process, namely pH, light intensity, dopant percentage, dye concentration, and contact time, were evaluated. The results of the present study revealed that the efficiency of the photocatalytic process for the degradation of organic dyes was higher at acidic pH values than neutral or basic values. In addition, upon increasing the light intensity from 172 to 505 W/m2, the efficacy of dye degradation was enhanced from 27.8 to 73.5%. Increasing the concentration of the dopant percentage from 1 to 5% w/v increased the degradation efficacy from 30.69 to 73.1%. Increasing the initial dye concentration from 20 to 100?mg/L decreased the degradation efficacy from 86.9 to 37.5%. Photocatalytic process using WO3-doped ZnO nanoparticles fixed on a glass surface thus was proven to show a good efficiency for the degradation of organic dye in aquatic solutions.
  1. Anwar DI, Mulyadi D, Procedia Chem., 17, 49 (2015)
  2. Liu X, Cheng YM, Li XF, Dong JF, Appl. Surf. Sci., 439, 784 (2018)
  3. Turcanu A, Bechtold T, J. Clean Prod., 142, 1397 (2017)
  4. Soltani RDC, Safari M, Ultrason. Sonochem., 32, 181 (2006)
  5. Pirhashemi M, Habibi-Yangjeh A, J. Photochem. Photobiol. A-Chem., 363, 31 (2018)
  6. Ouyang J, Zhao Z, Suib SL, Yang H, J. Colloid Interface Sci., 539, 135 (2018)
  7. Punzi M, Anbalagan A, Borner RA, Svensson BM, Jonstrup M, Mattiasson B, Chem. Eng. J., 270, 290 (2015)
  8. Rodrigues CSD, Madeira LM, Boaventura RAR, Environ. Technol., 34, 719 (2013)
  9. Salehi K, Bahmani A, Shahmoradi B, Pordel MA, Kohzadi S, Gong Y, et al., J. Environ. Sci. Technol., 14, 2067 (2017)
  10. Soltani RDC, Safari M, Mashayekhi M, Ultrason. Sonochem., 30, 123 (2016)
  11. Pirhashemi M, Habibi-Yangjeh A, J. Colloid Interface Sci., 491, 216 (2017)
  12. Jorfi S, Soltani RDC, Ahmadi M, Khataee A, Safari M, J. Environ. Manag., 187, 111 (2017)
  13. Konicki W, Pelech I, Mijowska E, Jasinska I, Chem. Eng. J., 210, 87 (2012)
  14. Mousavi M, Habibi-Yangjeh A, Pouran SR, J. Mater. Sci.: Mater. Electron., 29, 1719 (2018)
  15. Soltani RDC, Rezaee A, Khataee AR, Safari M, J. Ind. Eng. Chem., 20(4), 1861 (2014)
  16. Pirhashemi M, Habibi-Yangjeh A, Pouran SR, J. Ind. Eng. Chem., 62, 1 (2018)
  17. Mahvi AH, Maleki A, Desalin. Water Treat., 20, 197 (2010)
  18. Maleki A, Mahvi A, Alimohamadi M, Ghasri A, Pakistan J. Biol. Sci., 9, 2338 (2006)
  19. Lazar MA, Varghese S, Nair SS, Catalysts, 2, 572 (2012)
  20. Liu N, Lu N, Su Y, Wang P, Quan X, Sep. Purif. Technol., 211, 782 (2019)
  21. Behnajady MA, Modirshahla N, Daneshvar N, Rabbani M, Chem. Eng. J., 127(1-3), 167 (2007)
  22. Saleh R, Djaja NF, Superlattices Microstruct, 74, 217 (2014)
  23. Shekofteh-Gohari M, Habibi-Yangjeh A, Abitorabi M, Rouhi A, Crit. Rev. Environ. Sci. Technol., 1 (2018).
  24. Rezaee A, Soltani RDC, Khataee A, Godini H, Mater. Environ. Sci., 3, 955 (2012)
  25. Pirsaheb M, Shahmoradi B, Beikmohammadi M, Azizi E, Hossini H, Ashraf GM, Sci. Rep., 7, 1473 (2017)
  26. Pirhashemi M, Habibi-Yangjeh A, Sep. Purif. Technol., 193, 69 (2018)
  27. Becheri A, DA1/4rr M, Nostro PL, Baglioni P, J. Nanopart. Res., 10, 679 (2008)
  28. Xie J, Zhou Z, Lian Y, Hao Y, Liu X, Li M, et al., Ceram. Int., 40, 12519 (2014)
  29. Soltani RDC, Rezaee A, Safari M, Khataee AR, Karimi B, Desalin. Water Treat., 1 (2013).
  30. Hunger K, Mischke P, Rieper W, Raue R, Kunde K, Engel A, Azo Dyes in Ullmann’s Encyclopedia of Industrial Chemistry, Wiley-VCH, Weinheim, Germany, 2005.
  31. Landis W, Sofield R, Yu MH, Landis WG, Introduction to Environmental Toxicology, 2003.
  32. International Agency for Research on Cancer. Monographs on the evaluation of the carcinogenic risk of chemicals to humans. Some monomers Switzerland, 1979.
  33. Zhan YH, Zhou XA, Fu B, Chen YL, J. Hazard. Mater., 187(1-3), 348 (2011)
  34. Mote VD, Huse VR, Dole BN, World J. Condens. Matter Phys., 2, 208 (2012)
  35. Sowa H, Ahsbahs H, J. Appl. Crystallogr., 39, 169 (2006)
  36. Siriwong C, Wetchakun K, Wisitsoraat A, Phanichphant S, Sensors (2009).
  37. Kathirvel P, Manoharan D, Mohan SM, Kumar S, J. Optoelectron. Biomed. Mater., 1, 25 (2009)
  38. Zimmer C, Wright SC, Engelhardt RT, Johnson GA, Kramm C, Breakefield XO, et al., Exp. Neurol., 143, 61 (1997)
  39. Jayakumar OD, Gopalakrishnan IK, Kadam RM, Vinu A, Asthana A, Tyagi AK, J. Cryst. Growth, 300(2), 358 (2007)
  40. Changlin Y, Kai Y, Qing S, Jimmy CY, Fangfang C, Xin L, Chin. J. Catal., 32, 555 (2011)
  41. Bharathi V, Sivakumar M, Udayabhaskar R, Takebe H, Karthikeyan B, Appl. Phys. A-Mater. Sci. Process., 116, 395 (2014)
  42. Hadi M, McKay G, Samarghandi MR, Maleki A, Aminabad MS, Desalin. Water Treat., 49, 81 (2012)
  43. Wu CH, Dyes Pigment., 77, 31 (2008)
  44. Subash B, Krishnakumar B, Swaminathan M, Shanthi M, J. Mol. Catal. A-Chem., 366, 54 (2013)
  45. Pardeshi SK, Patil AB, J. Mol. Catal. A-Chem., 308(1-2), 32 (2009)
  46. Parida KM, Dash SS, Das DP, J. Colloid Interface Sci., 298(2), 787 (2006)
  47. Saleh SM, Kamat PV, Huehn R, Nicolaescu R, Semiconductor Nanostructures for the Simultaneous Detection and Degradation of Organic Contaminants in Water. Abstracts of Papers of the American Chemical Society, 2002.
  48. Saleh SM, Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 211, 141 (2019)