Korean Journal of Chemical Engineering, Vol.36, No.4, 563-572, April, 2019
Palladium-copper membrane modules for hydrogen separation at elevated temperature and pressure
E-mail:
Two Pd-Cu alloy membrane modules were designed to recover high-purity hydrogen from a mixture at elevated temperature and pressure. Permeation and separation behavior were studied experimentally and theoretically using pure hydrogen gas and a binary mixture of H2/CO2 (58.2 : 41.8 in vol%) at 250-350 °C and 800-1,200 kPa. The Pd-Cu membrane modules presented a maximum permeation flux at the highest temperature (350 °C ) and pressure (1,200 kPa) both for pure H2 gas and the binary mixture. When the permeate and retentate flowed in the same direction in the membrane module (co-current flow), a temperature gradient and permeation flux variations were observed and the permeance of the H2/CO2 mixture was 2.263 X 10-4 mL/(cm2ㆍsㆍPa0.5) at 250 °C and 3.409 X 10-4 mL/(cm2ㆍsㆍPa0.5) at 350 °C. On the other hand, when the retentate flowed in the opposite direction to the permeate flow (counter-current flow), the temperature gradient and permeation flux variations were significantly reduced and the permeation flux improved by about 11% from that of the co-current flow module. The well-distributed temperature profile inside the module and increased hydrogen pressure difference through the membrane layer shortened the time to reach the steady state in the counter-current Pd-Cu membrane module, thus enhancing the membrane performance. The results of this study can contribute towards developing an efficient Pd-Cu membrane reactor.
Keywords:Pd-Cu Membrane;Hydrogen Separation;Hydrogen/Carbon Dioxide Mixture;Counter-current Flow Module
- Adhikari S, Fernando S, Ind. Eng. Chem. Res., 45(3), 875 (2006)
- Hu W, Wu X, Li Z, Yang J, Phys. Chem. Chem. Phys., 15, 5753 (2013)
- Dolan MD, J. Membr. Sci., 362(1-2), 12 (2010)
- Han YJ, Kang JH, Kim HE, Moon JH, Cho CH, Lee CH, Ind. Eng. Chem. Res., 56(9), 2582 (2017)
- Han YJ, Ko KJ, Choi HK, Moon JH, Lee CH, Sep. Purif. Technol., 182, 151 (2017)
- Gade SK, Thoen PM, Way JD, J. Membr. Sci., 316(1-2), 112 (2008)
- Rahimpour M, Samimi F, Babapoor A, Tohidian T, Mohebi S, Palladium membranes applications in reaction systems for hydrogen separation and purification, Process Intensification (2017).
- Gao HY, Lin YS, Li YD, Zhang BQ, Ind. Eng. Chem. Res., 43(22), 6920 (2004)
- Al-Mufachi N, Rees N, Steinberger-Wilkens R, Renew. Sust. Energ. Rev., 47, 540 (2015)
- Way JD, Palladium/copper alloy composite membranes for high temperature hydrogen separation from coal-derived gas streams, Colorado School of Mines (US) (2003).
- Conde JJ, Marono M, Sanchez-Hervas JM, Sep. Purif. Rev., 46, 152 (2017)
- Gryaznov V, Platinum Met. Rev., 30, 68 (1986)
- Peters TA, Kaleta T, Stange M, Bredesen R, J. Membr. Sci., 383(1-2), 124 (2011)
- Gallucci F, Fernandez E, Corengia P, Annaland MV, Chem. Eng. Sci., 92, 40 (2013)
- Baronskaya NA, Minyukova TP, Sipatrov AG, Demeshkina MP, Khassin AA, Dimov SV, Kozlov SP, Kuznetsov VV, Terentiev VY, Khristolyubov AP, Brizitskiy OF, Yurieva TM, Chem. Eng. J., 134(1-3), 195 (2007)
- Blaisdell CT, Kammermeyer K, Chem. Eng. Sci., 28, 1249 (1973)
- Basile A, Paturzo L, Gallucci F, Catal. Today, 82(1-4), 275 (2003)
- Gallucci F, De Falco M, Tosti S, Marrelli L, Basile A, Int. J. Hydrog. Energy, 33(21), 6165 (2008)
- Basile A, Tosti S, Capannelli G, Vitulli G, Iulianelli A, Gallucci F, Drioli E, Catal. Today, 118(1-2), 237 (2006)
- Piemonte V, De Falco M, Favetta B, Basile A, Int. J. Hydrog. Energy, 35(22), 12609 (2010)
- Kim CH, Han JY, Lim H, Kim DW, Ryi SK, Korean J. Chem. Eng., 34(4), 1260 (2017)
- Moon JH, Lee CH, AIChE J., 53(12), 3125 (2007)
- Moon JH, Bae JH, Han YJ, Lee CH, J. Membr. Sci., 356(1-2), 58 (2010)
- He X, Nieto DR, Lindbrathen A, Hagg MB, Membrane System Design for CO2 Capture, Design, Control and Integration, 10249 (2017).
- Ahmada F, Lau KK, Lock SSM, Rafiq S, Khan AU, Lee M, J. Ind. Eng. Chem., 21, 1246 (2015)
- Huang Y, Merkel TC, Baker RW, J. Membr. Sci., 463, 33 (2014)
- Caravella A, Scura F, Barbieri G, Drioli E, J. Phys. Chem. B, 114(18), 6033 (2010)
- Mendes D, Sa S, Tosti S, Sousa JM, Madeira LM, Mendes A, Chem. Eng. Sci., 66(11), 2356 (2011)
- Gielens FC, Tong HD, Vorstman MAG, Keurentjes JTF, J. Membr. Sci., 289(1-2), 15 (2007)
- Ward TL, Dao T, J. Membr. Sci., 153(2), 211 (1999)
- Moon JH, Bae JH, Bae YS, Chung JT, Lee CH, J. Membr. Sci., 318(1-2), 45 (2008)
- Yuan LX, Goldbach A, Xu HY, J. Phys. Chem. B, 111(37), 10952 (2007)
- Howard BH, Killmeyer RP, Rothenberger KS, Cugini AV, Morreale BD, Enick RM, Bustamante F, J. Membr. Sci., 241(2), 207 (2004)
- Goldbach A, Yuan LX, Xu HY, Sep. Purif. Technol., 73(1), 65 (2010)
- Bustamante F, Enick RM, Cugini AV, Killmeyer RP, Howard BH, Rothenberger KS, Ciocco MV, Morreale BD, AIChE J., 50(5), 1028 (2004)
- Helling RK, Tester JW, Energy Fuels, 1, 417 (1987)
- Kulprathipanja A, Alptekin GO, Falconer JL, Way JD, Ind. Eng. Chem. Res., 43(15), 4188 (2004)
- Basile A, Chiappetta G, Tosti S, Violante V, Sep. Purif. Technol., 25(1-3), 549 (2001)
- Lee SW, Park JS, Lee CB, Lee DW, Kim H, Ra HW, Kim SH, Ryi SK, Energy, 66, 635 (2014)