Polymer Engineering and Science, Vol.59, No.1, 103-111, 2019
Core-shell structured Al/PVDF nanocomposites with high dielectric permittivity but low loss and enhanced thermal conductivity
Surface modification of core-shell structured Al (Al@Al2O3) nanoparticles was performed using gamma-(Aminopropyl)-triethoxysilane (APS) and dopamine (DA), respectively, and the microstructures, dielectric properties and thermal conductivities of the Al/poly(vinylidene fluoride) (PVDF) nanocomposites were investigated. Both DA and APS enhance the interfacial bonding strength between the fillers and the matrix, leading to homogeneous dispersion of Al nanoparticles in PVDF matrix. Compared with raw Al nanoparticles, surface-treated Al/PVDF exhibit much higher dielectric permittivity due to the enhanced interfacial interactions between the two components, whereas, the dielectric loss and electric conductivity of the nanocomposites still remain at rather low levels owing to the insulating alumina shell preventing effectively core Al from direct contact. The dynamic dielectric properties results reveal that dielectric constant and loss increase with temperature due to the gradually enhanced mobility of molecular chain segments of PVDF for the raw Al/PVDF and treated Al/PVDF nanocomposites. Additionally, the PVDF nanocomposites with Al treated with APS and DA show enhanced thermal conductivities compared with raw Al/PVDF under the same filler loading because of reduced thermal interfacial resistance promoting phonon transfer across the interfaces. POLYM. ENG. SCI., 59:103-111, 2019. (c) 2018 Society of Plastics Engineers