화학공학소재연구정보센터
Polymer Engineering and Science, Vol.59, E7-E13, 2019
Wall Slip of Linear Polymer Melts During Ultrasonic-assisted Micro-injection Molding
The wall slip of linear polymer melts under ultrasonic vibration is investigated by correcting the slip mechanism, and melt flow behaviors in ultrasonic-assisted micro-injection molding (UIM) method are discussed. Based on the effect mechanism of ultrasonic vibration on the melt, theoretical models of the critical shear stresses for the onset of weak and strong wall slip during UIM are established, and the change in rheological properties due to the onset of wall slip under ultrasonic vibration is experimental investigated by a built measurement system. The results show that the onset of weak and strong wall slip of the melt in micro cavity are promoted by ultrasonic vibration, which agree with the built theoretical models, and the melt filling capability in micro cavity is enhanced by reducing apparent viscosity and releasing shear stress of the polymer melt, which improves the molding quality of micro polymer parts via UIM method. POLYM. ENG. SCI., 59:E7-E13, 2019. (c) 2018 Society of Plastics Engineers