화학공학소재연구정보센터
Macromolecules, Vol.51, No.23, 9850-9860, 2018
Entanglement Reduction Induced by Geometrical Confinement in Polymer Thin Films
We report simulation results on melts of entangled linear polymers confined in a free-standing thin film. We study how the geometric constraints imposed by the confinement alter the entanglement state of the system compared to the equivalent bulk system using various observables. We find that the confinement compresses the chain conformation uniaxially, decreasing the volume pervaded by the chain, which in turn reduces the number of the accessible interchain contact that could lead to entanglements. This local and nonuniform effect depends on the position of the chain within the film. We also test a recently presented theory that predicts how the number of entanglements decreases with geometrical confinement.