Macromolecules, Vol.52, No.1, 208-216, 2019
Effect of Concentration on the Dissolution of One-Dimensional Polymer Crystals: A TEM and NMR Study
We report a study of the dissolution of core-crystalline polyferrocenyldimethylsilane-block-polyisoprene (PFS53-b-PI637, where the subscripts are the degrees of polymerization of the two blocks) micelle fragments in decane for different concentrations (ranging from 0.01 to 6 mg mL(-1)) by a combination of transmission electron microscopy (TEM) and high-temperature H-1 NMR. We used self-seeding experiments at different temperatures as an efficient, although indirect, way to evaluate the dissolution of these micelles fragments. We annealed micelle fragment solutions at five different temperatures (50, 60, 65, 70, and 75 degrees C) for 30 min and cooled them to room temperature to regrow the micelles. The amount of micelle fragments that dissolved at the annealing temperature was then evaluated by comparing the length of the regrown micelles with that of the starting micelle fragments. We show that seed crystallites are less prone to dissolution as their concentration increases. In addition, by combining results of self-seeding experiments and H-1 NMR measurements at 75 degrees C, we evaluated the percentage of unimer released upon the partial dissolution of seed fragments at 75 degrees C and established that the mechanism of seed fragment dissolution is also concentration dependent: at low concentrations, they dissolve in a cooperative process, whereas at high concentrations, they dissolve partially from both ends.