Langmuir, Vol.35, No.2, 538-550, 2019
Adsorption of Native Amino Acids on Nanocrystalline TiO2: Physical Chemistry, QSPR, and Theoretical Modeling
The affinity of biomolecules, such as peptides and proteins, with inorganic surfaces, is a fundamental topic in biotechnology and bionanotechnology. Amino acids are often used as "model" bits of peptides or proteins for studying their properties in different environments and/or developing functional surfaces. Despite great demand for knowledge about amino acid interactions with metal oxide surfaces, studies on the issue represent a fragmentary picture. In this paper, we describe amino acid adsorption on nanocrystalline anatase systematically at uniform conditions. Analysis of the Gibbs free adsorption energy indicated how the aliphatic, aromatic, polar, and charged side chain groups affect the binding affinity of the amino acids. Thermodynamic features of the L-amino acid adsorption receive thorough interpretation with calculated molecular descriptors. Theoretical modeling shows that amino acids complex with TiO2 nanoparticles as zwitterions via ammonium group.