화학공학소재연구정보센터
Journal of the American Chemical Society, Vol.141, No.5, 2087-2096, 2019
Cyclometalated Iridium-PhanePhos Complexes Are Active Catalysts in Enantioselective Allene-Fluoral Reductive Coupling and Related Alcohol-Mediated Carbonyl Additions That Form Acyclic Quaternary Carbon Stereocenters
Iridium complexes modified by the chiral phosphine ligand PhanePhos catalyze the 2-propanol-mediated reductive coupling of diverse 1,1-disubstituted allenes 1a-1u with fluoral hydrate 2a to form CF3-substituted secondary alcohols 3a-3u that incorporate acyclic quaternary carbon-containing stereodiads. By exploiting concentration dependent stereoselectivity effects related to the interconversion of kinetic (Z)- and thermodynamic (E)-sigma-allyliridium isomers, adducts 3a-3u are formed with complete levels of branched regioselectivity and high levels of anti-diastereo-and enantioselectivity. The utility of this method for construction of CF3-oxetanes and CF3-azetidines is illustrated by the formation of 4a and 6a, respectively. Studies of the reaction mechanism aimed at illuminating the singular effectiveness of PhanePhos as a supporting ligand in this and related transformations have led to the identification of a chromatographically stable cyclometalated iridium-(R)-PhanePhos complex, Ir-PP-I, that is catalytically competent for allene-fluoral reductive coupling and previously reported transfer hydrogenative C-C couplings of dienes or CF3-allenes with methanol. Deuterium labeling studies, reaction progress kinetic analysis (RPKA) and computational studies corroborate a catalytic mechanism involving rapid allene hydrometalation followed by turnover-limiting carbonyl addition. A computationally determined stereochemical model shows that the ortho-CH2 group of the cyclometalated iridium-PhanePhos complex plays a key role in directing diastereo- and enantioselectivity. The collective data provide key insights into the structural-interactional features of allyliridium complexes required to enforce nucleophilic character, which should inform the design of related cyclometalated catalysts for umpoled allylation.