Journal of Rheology, Vol.63, No.1, 141-155, 2019
In-line rheological monitoring of fused deposition modeling
An in-line rheometer has been incorporated into a fused deposition modeling printer for the first time by designing a modified nozzle with a custom pressure transducer and a thermocouple for measuring the processed melt temperature. Additionally, volumetric flow rates and shear rates were monitored by counting the stepper motor pulses as well as the pulses from a custom filament encoder to account for filament slippage and skipped motor steps. The incorporation of the sensors and the design and development of the in-line rheometer are described; and pressures, temperatures, and viscosities within the 3D printing nozzle are presented. The in-line rheometer was validated against traditional, off-line rotational rheology and capillary rheology measurements by analyzing two polymeric materials: polycarbonate and high-impact polystyrene. A variety of rheological corrections were considered for the in-line rheometer, including entrance effects, non-Newtonian corrections, shear heating, pressure effects, and temperature fluctuations/inaccuracies. Excellent agreement was obtained between the in-line and off-line rheometers after applying the most critical corrections, which were found to be entrance effects, non-Newtonian corrections, and temperature inaccuracies. After applying the appropriate corrections, the in-line rheometer provides an accurate viscosity measurement that can be used for real-time monitoring and process control. (C) 2018 Author(s).