화학공학소재연구정보센터
Journal of Colloid and Interface Science, Vol.537, 536-546, 2019
A high-resolution study of in situ surface-enhanced Raman scattering nanotag behavior in biological systems
The colloidal stability of surface-enhanced Raman scattering (SERS) nanotags (Raman reporter-conjugated plasmonic nanoparticles) significantly affects the accuracy and reproducibility of SERS measurements, particularly in biological systems. Limited understanding of SERS nanotag stability may partly hamper the translation of SERS nanotags from the laboratory to their use in the clinic. In this contribution, we utilized differential centrifugal sedimentation (DCS), a reliable and straightforward technique to comprehensively analyze the colloidal stability of SERS nanotags in biological systems. Compared with other particle characterization techniques, DCS has been shown to have a unique advantage for high-resolution and high-throughput polydisperse particle characterization. DCS data revealed that the universal aggregation prevention practice of coating SERS nanotags with silica or bovine serum albumin layers did not sufficiently stabilize them in common measurement environments (e.g., 1 x PBS). Combined DCS and SERS measurements established a strong correlation between the degrees of nanotag aggregation and signal intensities, further reinforcing the necessity of characterizing SERS nanotag stability for every condition in which they are used. We also found that increasing the protein thickness by the inclusion of extra protein components in the detection environments and antibody functionalization can improve the stability of SERS nanotags. We believe that this study can provide guidelines on appropriate measurement techniques and particle design considerations to assess and improve SERS nanotag stability in complex biological systems, (C) 2018 Elsevier Inc. All rights reserved.