화학공학소재연구정보센터
International Journal of Hydrogen Energy, Vol.43, No.45, 20976-20992, 2018
Parameter sizing and stability analysis of a highway fuel cell electric bus power system using a multi-objective optimization approach
Although FC based electric buses are currently popular on urban streets or in short transit routes within large facilities, the version that is designed to operate on a highway, which has much higher dynamic requirements, is yet to be well developed. This research proposes to adopt the NSGA-II based multi-objective optimization scheme to optimize a fuel cell-battery-supercapacitor (SC) based FC power system (FCPS) that is specifically for a FC electric bus operating on the highway fuel economy cycle (HWFET). The optimization objectives are to minimize the FC's fuel consumption, the required battery and SC size and the battery degradation rate. More importantly, the optimization scheme is based on a combined energy management strategy (EMS) software parameter and hardware component sizing approach which is important for guaranteeing dynamically stable responses. This characteristic is achieved by imposing constraints that limit the transient time responses the DC-Bus capacitor voltage electrical parameters upon a generic step change in load power. Results demonstrate that dynamic stability can be guaranteed with proper software parameter and hardware components combinations without any trade-off requirements with the optimizer objectives. Moreover, the system mass and the battery degradation objectives are in trade-off but don't have any dependence to hydrogen consumption. (C) 2018 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.