화학공학소재연구정보센터
International Journal of Hydrogen Energy, Vol.44, No.3, 2059-2068, 2019
Modeling the development of hydrogen vapor cloud considering the presence of air humidity
A three-dimensional CFD model for large-scale liquid hydrogen spills is developed and validated by the experiments carried out by NASA. The effect of humidity on the development of hydrogen vapor cloud is emphasized, with the modified expressions of Lee model accounting for the phase changes of water and hydrogen. The results show that the numerical prediction is more consistent with the experiment considering the presence of air humidity. The condensation of water in the atmosphere increases the buoyancy of the vapor cloud, and promotes the diffusion of the cloud in vertical direction. The dimension of the cloud in streamwise direction changes little under different humidity, due to the balance between the height-dependent wind speed and the induced buoyancy. The scope of visible cloud indicated by the condensed water vapor expands with the increasing air humidity, and still lies within the flammable domain when the relative humidity approaching to 75%. Water vapor condensation induces the cloud temperature rise under the same concentration, and the leeward part is more influenced compared with the upwind part. (C) 2018 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.