Inorganic Chemistry, Vol.57, No.23, 14758-14763, 2018
Hydrothermal Synthesis of Urchin-like W-V-O Nanostructures with Excellent Catalytic Performance
Urchinlike W-V-O microspheres have been successfully synthesized for the first time by a one-pot hydrothermal approach. The as-synthesized W-V-O material was characterized by several techniques such as XRD, SEM, TEM, FTIR, EDS, BET, and Raman spectroscopy. The characterization results have revealed that the W-V-O microspheres consist of numerous one-dimensional nanobelts radially grown from the center. The typical nanobelts display rectangular cross sections with lengths of several micrometers, widths of about SO nm, and thicknesses of approximately 10-20 nm. Vanadium oxides are dispersed highly either on the external surface or inside the channel surface of the hexagonal WO3 structure. In addition, the as-obtained urchin-like W-V-O material was explored as a catalyst for the ammoxidation of 2,4- and 2,6-dichlorotoluene to the corresponding nitriles. The catalytic results have indicated that the W-V-O nanostructures show excellent performance with yields of 2,4- and 2,6-dichlorobenzonitrile respectively reaching up to 77.3 and 75.1%, which are the highest among the previously reported catalysts with two components. The formation process of the urchinlike W-V-O microspheres was simply investigated.