Energy Conversion and Management, Vol.182, 89-94, 2019
Modeling and optimization of industrial internal combustion engines running on Diesel/syngas blends
The paper presents a numerical analysis of combustion, carried out on a compression ignition indirect injection engine fueled by both Diesel and syngas, the latter obtained from biomass gasification and introduced in the intake manifold. The computational fluid dynamics model includes an improved chemical kinetics scheme, tailored on the syngas-diesel dual fuel combustion. The model was validated by an experimental campaign, on the same engine. The syngas fuel was produced by a small scale gasifier running on wood chips. Several simulations were performed varying both the share of syngas and the Diesel start of injection angle. The total amount of heat released by combustion can increase up to 50%, along with the indicated work and the cylinder peak pressure. The start of injection angle should be modified in order to preserve the mechanical integrity of the engine, as well as to maximize its brake efficiency. The numerical analysis provides the guidelines for setting the injection strategy, as a function of the syngas share.