Energy, Vol.168, 1119-1127, 2019
Real-time price-based demand response model for combined heat and power systems
Real-time electricity pricing could promote the adaptation of demand response programs in the presence of price volatility in smart grids. This paper proposes a real-time price-based demand response management model for heat and power consumers. In the proposed demand response program (DRP) the responsive electrical load can vary in different time intervals. In addition, total power and heat demands of the consumer are met, without any curtailment. The price uncertainty is envisaged through robust optimization for minimizing the worst-case electricity and heat demand procurement cost while flexibly adjusting the solution robustness. The proposed model can be easily embedded in the energy management system of the customer equipped with combined heat and power systems (CHPs), a power-only unit, a boiler unit and a heat buffer tank (HBT) and makes it possible to achieve a minimum cost. In this paper, the dual dependency characteristic of the heat and power in different types of CHPs has been taken into account. Furthermore, technical constraints, i.e. minimizing number of start-ups and shutdowns, ramp rate limits and minimum up/down-time limits of generation facilities are satisfied. Numerical simulations confirming the applicability and effectiveness of the proposed model are provided. According to the simulation results, there is a significant increase in the daily cost of the consumer without smart grid technology in comparison with the consumer employing the proposed real-time model. (C) 2018 Elsevier Ltd. All rights reserved.