Desalination, Vol.451, 172-181, 2019
Three-dimensional graphene oxide and polyvinyl alcohol composites as structured activated carbons for capacitive desalination
Membrane capacitive deionization (MCDI) is a technique that is derived from conventional capacitive deionization (CDI). Additional ion-exchange membranes are included in the MCDI cell to prevent ion-expulsion and improve cyclability. As it stands, MCDI represents the most feasible option for large scale desalination to take place. In this work, we investigate the desalination performance of a novel structured activated carbon material synthesized from the assembly of polyvinyl alcohol (PVA) on graphene oxide (GO). A hydrothermal treatment causes self -assembly of the PVA covered GO sheets and the product is a polymeric framework supported by reduced GO sheets. A further activation process by KOH produces the structured activated carbon (AC). These new structured ACs possess unique morphologies and exhibit high adsorption capacities (> 30 mg g(-1)) which far surpass traditional ACs.