Applied Energy, Vol.231, 1285-1306, 2018
A comparison of storage systems in neighbourhood decentralized energy system applications from 2015 to 2050
The potential of both long-term (hydrogen storage) and short-term (batteries and thermal) storage systems in decentralized neighbourhoods are assessed using a multi-objective optimization approach that minimizes both costs and CO2 emissions. A method is developed, which evaluates the performance of long and short-term storage systems in the future based on multi-objective optimization. More specifically, hydrogen storage is investigated for its future potential to be used as a long-term storage in a decentralized context and it is compared with short-term storage systems such as batteries and thermal storage. In order to analyze potential future developments, a scenario approach is deployed based on the Intergovernmental Panel of Climate Change's 'Special Report on Emissions Scenarios'. Three future scenarios are defined and simulated for the years of 2015, 2020, 2035, and 2050 for both a rural and an urban neighbourhood in Switzerland. Based on the scenarios, the energy demand and renewable potential projections until 2050 are simulated including retrofitted buildings and renewable potential in the neighbourhoods. The Pareto front of solutions is then benchmarked against national carbon and energy targets from 2020 until 2050. In addition, a range of parameter assumptions (e.g., for economic variables, policy changes, environmental conditions) are used in each scenario to incorporate uncertainty into the analysis. The long-term storage potential of hydrogen, in particular, is evaluated for its capability to shift renewable surpluses in summer towards demand later in the year. From the results, it is predicted that neighbourhoods with high renewable surpluses (i.e., in rural settings) should consider the advantages of a hydrogen storage system from 2035 to 2050. For neighbourhoods with low surpluses, short-term battery and thermal storage systems are predicted to be sufficient for load shifting. It is also observed that a high feed-in
Keywords:Decentralized energy systems;Power-to-hydrogen;Multi-objective optimization;Renewable energy sources;Storage technologies