화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.72, 250-254, April, 2019
Cobalt vanadate nanoparticles as bifunctional oxygen electrocatalysts for rechargeable seawater batteries
E-mail:,
Herein, we report synthesis of Co3V2O8 nanoparticles for an electrocatalyst of seawater batteries. The cell using Co3V2O8 achieves a higher voltage efficiency of ~76% than ~72% of the cell without catalyst. In addition, the Co3V2O8 shows a good rate capability with reduced voltage gaps and an increased power density of ~5.9 mW cm-2. This cell is stable over 20 cycles for 400 h with reduced voltage gap of ~0.95 V. These findings are attributed to the facilitated redox kinetics of the clustered Co3V2O8 nanoparticles arising from the optimal metal- bond strength and large surface area.
  1. Winter M, Brodd RJ, Chem. Rev., 104(10), 4245 (2004)
  2. Palacin MR, Chem. Soc. Rev., 38, 2565 (2009)
  3. Placke T, Kloepsch R, Duhnen S, Winter M, J. Solid State Electrochem., 21, 1939 (2017)
  4. Kim H, Park JS, Sahgong SH, Park S, Kim JK, Kim Y, J. Mater. Chem. A, 2, 19584 (2014)
  5. Kim JK, Mueller F, Kim H, Bresser D, Park JS, Lim DH, Kim GY, Passerini S, Kim Y, NPG Asia Mater., 6, e144 (2014)
  6. Kim JK, Lee E, Kim H, Johnson C, Cho J, Kim Y, ChemElectroChem, 2, 328 (2015)
  7. Hwang SM, Kim J, Kim Y, Kim Y, J. Mater. Chem. A, 4, 17946 (2016)
  8. Abirami M, Hwang SM, Yang J, Senthilkumar ST, Kim J, Go WS, Senthilkumar B, Song HK, Kim Y, ACS Appl. Mater. Interfaces, 8, 32778 (2016)
  9. Han J, Hwang SM, Go W, Senthilkumar ST, Jeon D, Kim Y, J. Power Sources, 374, 24 (2018)
  10. Senthilkumar S, Park SO, Kim J, Hwang SM, Kwak SK, Kim Y, J. Mater. Chem. A, 5, 14174 (2017)
  11. Bing Y, Liu H, Zhang L, Ghosh D, Zhang J, Chem. Soc. Rev., 39, 2184 (2010)
  12. Lu YC, Gasteiger HA, Shao-Horn Y, J. Am. Chem. Soc., 133(47), 19048 (2011)
  13. Mamaca N, Mayousse E, Arrii-Clacens S, Napporn TW, Servat K, Guillet N, Kokoh KB, Appl. Catal. B: Environ., 111, 376 (2012)
  14. Reier T, Oezaslan M, Strasser P, ACS Catal., 2, 1765 (2012)
  15. Seitz LC, Dickens CF, Nishio K, Hikita Y, Montoya J, Doyle A, Kirk C, Vojvodic A, Hwang HY, Norskov JK, Jaramillo TF, Science, 353(6303), 1011 (2016)
  16. Wang ZL, Xu D, Xu JJ, Zhang XB, Chem. Soc. Rev., 43, 7746 (2014)
  17. Yuan C, Wu HB, Xie Y, Lou XW, Angew. Chem.-Int. Edit., 53, 1488 (2014)
  18. Jorissen L, J. Power Sources, 155(1), 23 (2006)
  19. Han L, Dong SJ, Wang EK, Adv. Mater., 28(42), 9266 (2016)
  20. Liang YY, Li YG, Wang HL, Zhou JG, Wang J, Regier T, Dai HJ, Nat. Mater., 10(10), 780 (2011)
  21. Hamdani M, Singh R, Chartier P, Int. J. Electrochem. Sci., 5, 556 (2010)
  22. Wang JH, Cui W, Liu Q, Xing ZC, Asiri AM, Sun XP, Adv. Mater., 28(2), 215 (2016)
  23. Song F, Hu XL, J. Am. Chem. Soc., 136(47), 16481 (2014)
  24. Prabu M, Ketpang K, Shanmugam S, Nanoscale, 6, 3173 (2014)
  25. Serov A, Andersen NI, Roy AJ, Matanovic I, Artyushkova K, Atanassov P, J. Electrochem. Soc., 162(4), F449 (2015)
  26. Sahgong SH, Senthilkumar S, Kim K, Hwang SM, Kim Y, Electrochem. Commun., 61, 53 (2015)
  27. Liardet L, Hu X, ACS Catal., 8, 644 (2017)
  28. Xing M, Kong LB, Liu MC, Liu LY, Kang L, Luo YC, J. Mater. Chem. A, 2, 18435 (2014)
  29. Hyun S, Ahilan V, Kim H, Shanmugam S, Electrochem. Commun., 63, 44 (2016)
  30. Gund GS, Dubal DP, Jambure SB, Shinde SS, Lokhande CD, J. Mater. Chem. A, 1, 4793 (2013)
  31. Im Y, Kang S, Kwak BS, Park KS, Cho TW, Lee JS, Kang M, Korean J. Chem. Eng., 33(4), 1447 (2016)
  32. Baldan A, J. Mater. Sci., 37(11), 2171 (2002)
  33. Sambandam B, Soundharrajan V, Mathew V, Song J, Kim S, Jo J, Tung DP, Kim S, Kim J, J. Mater. Chem. A, 4, 14605 (2016)