화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.71, 410-424, March, 2019
Novel boehmite transformation into γ-alumina and preparation of efficient nickel base alumina porous extrudates for plasma-assisted CO2 methanation
E-mail:
Homogeneous low pressure cold plasma glow discharge was used for both boehmite to gamma alumina transformation as well as for catalytic CO2 conversion into methane. Novel plasma-assisted boehmite transformation into alumina was successfully achieved at lower temperature (80 °C less) and shorter period of time (1 h less) than the classical transformation. The final alumina structure properties were improved. The mechanism of the novel plasma-assisted boehmite transformation was addressed. Nickel alumina porous extrudate preparation was optimized and fully characterized. The amounts of binder and nitric acid used during the preparation of extrudates were studied. The concentration of nitric acid presented a major role in the catalytic properties of these catalysts leading to the improvement of the active phase dispersion and reducibility. As a result, methane yield was also improved with support acidity. A simulation study was performed in order to evaluate the influence of the extrudates dimensions on the pressure developed inside the reactor and on the glow discharge stability. It was demonstrated by simulation the need of shaping the nickel alumina catalysts for allowing the generation of a stable plasma discharge through the catalytic bed. Plasma-assisted CO2 hydrogenation under partial vacuum was carried out using the optimized nickel alumina extrudates. Formulation of efficient nickel alumina porous extrudates is provided for plasma or even industrial CO2 methanation reactors.
  1. Azzolina-Jury F, Bento D, Henriques C, Thibault-Starzyk F, J. CO2 Util., 22, 97 (2017)
  2. Ordomsky VV, Khodakov AY, ChemCatChem, 9, 1040 (2017)
  3. Das D, Ravichandran G, Chakrabarty DK, Catal. Today, 36(3), 285 (1997)
  4. Dry ME, Catal. Today, 71(3-4), 227 (2002)
  5. Dry ME, Appl. Catal. A: Gen., 189(2), 185 (1999)
  6. Swalus C, Jacquemin M, Poleunis C, Bertrand P, Ruiz P, Appl. Catal. B: Environ., 125, 41 (2012)
  7. Kim A, Debecker DP, Devred F, Dubois V, Sanchez C, Sassoye C, Appl. Catal. B: Environ., 220, 615 (2018)
  8. Liu Q, Bian B, Fan JF, Yang J, Int. J. Hydrog. Energy, 43(10), 4893 (2018)
  9. Wang X, Shi H, Kwak JH, Szanyi J, ACS Catal., 5, 6337 (2015)
  10. Park JN, McFarland EW, J. Catal., 266(1), 92 (2009)
  11. Wang W, Chu W, Wang N, Yang W, Jiang CF, Int. J. Hydrog. Energy, 41(2), 967 (2016)
  12. Wierzbicki D, Debek R, Motak M, Grzybek T, Galvez ME, Da Costa P, Catal. Commun., 83, 5 (2016)
  13. Takano H, Kirihata Y, Izumiya K, Kumagai N, Habazaki H, Hashimoto K, Appl. Surf. Sci., 388, 653 (2016)
  14. Yan Y, Dai YH, He H, Yu YB, Yang YH, Appl. Catal. B: Environ., 196, 108 (2016)
  15. Aziz MAA, Jalil AA, Triwahyono S, Mukti RR, Taufiq-Yap YH, Sazegar MR, Appl. Catal. B: Environ., 147, 359 (2014)
  16. Zhou R, Rui N, Fan ZG, Liu CJ, Int. J. Hydrog. Energy, 41(47), 22017 (2016)
  17. Garbarino G, Bellotti D, Riani P, Magistri L, Busca G, Int. J. Hydrog. Energy, 40(30), 9171 (2015)
  18. Garbarino G, Riani P, Magistri L, Busca G, Int. J. Hydrog. Energy, 39(22), 11557 (2014)
  19. Martins J, Batai N, Silva S, Rafik-Clement S, Karelovic A, Debecker DP, Chaumonnot A, Uzio D, Catal. Commun., 58, 11 (2015)
  20. Neyts EC, Ostrikov K, Sunkara MK, Bogaerts A, Chem. Rev., 115(24), 13408 (2015)
  21. Neyts EC, Bogaerts A, J. Phys. D-Appl. Phys., 47, 224010 (2014)
  22. Azzolina-Jury F, Thibault-Starzyk F, Top. Catal., 60, 1709 (2017)
  23. Akhtar F, Andersson L, Ogunwumi S, Hedin N, Bergstrom L, J. Eur. Ceram. Soc.34, 1643, 2014
  24. Butterworth T, Elder R, Allen R, Chem. Eng. J., 293, 55 (2016)
  25. Van Laer K, Bogaerts A, Plasma Sources Sci. Technol., 25, 015002 (2016)
  26. Van Laer K, Bogaerts A, Plasma Sources Sci. Technol., 26, 085007 (2017)
  27. Yu QQ, Kong M, Liu T, Fei JH, Zheng XM, Plasma Chem. Plasma Process., 32(1), 153 (2012)
  28. Takaki K, Chang JS, Kostov KG, IEEE Trans. Dielectr. Electr. Insul., 11, 481 (2004)
  29. Chen HL, Lee HM, Chen SH, Chang MB, Ind. Eng. Chem. Res., 47(7), 2122 (2008)
  30. Butterworth T, Allen RWK, Plasma Sources Sci. Technol., 26, 065008 (2017)
  31. Liu CJ, Vissokov GP, Jang BWL, Catal. Today, 72(3-4), 173 (2002)
  32. Wang Z, Zhang Y, Neyts EC, Cao X, Zhang X, Jang BWL, Liu CJ, ACS Catal., 8, 2093 (2018)
  33. Liu XS, Truitt RE, J. Am. Chem. Soc., 119(41), 9856 (1997)
  34. Thibault-Starzyk F, Mauge F, Characterization of Solid Materials and Heterogeneous Catalysts, pp.3, 2012.
  35. Digne M, Sautet P, Raybaud P, Euzen P, Toulhoat H, J. Catal., 211(1), 1 (2002)
  36. Digne M, Sautet P, Raybaud P, Euzen P, Toulhoat H, J. Catal., 226(1), 54 (2004)
  37. Saleh TA, Gupta VK, Sep. Purif. Technol., 89, 245 (2012)
  38. Cassiano-Gaspar S, Bazer-Bachi D, Chevalier J, Lecolier E, Jorand Y, Rouleau L, Powder Technol., 255, 74 (2014)
  39. Frost RL, Kloprogge JT, Russell SC, Szetu J, Appl. Spectrosc., 53, 572 (1999)
  40. Lahousse C, Aboulayt A, Mauge F, Bachelier J, Lavalley JC, J. Mol. Catal., 84, 283 (1993)
  41. Lahousse C, Mauge F, Bachelier J, Lavalley JC, J. Chem. Soc.-Faraday Trans., 91, 2907 (1995)
  42. Lavalley JC, Catal. Today, 27(3-4), 377 (1996)
  43. Janosovits U, Ziegler G, Scharf U, Wokaun A, J. Non-Cryst. Solids, 210, 1 (1997)
  44. Kiss AB, Keresztury G, Farkas L, Spectrochim. Acta, 36A, 653 (1980)
  45. White WB, Roy R, Am. Mineral., 49, 1670 (1964)
  46. Parida KM, Pradhan AC, Das J, Sahu N, Mater. Chem. Phys., 113(1), 244 (2009)
  47. Lee JS, Kim HS, Park NK, Lee TJ, Kang M, Chem. Eng. J., 230, 351 (2013)
  48. Zhang YR, Neyts EC, Bogaerts A, J. Phys. Chem. C, 120, 25923 (2016)
  49. Zhang YR, Van Laer K, Neyts EC, Bogaerts A, Appl. Catal. B: Environ., 185, 56 (2016)
  50. Morterra C, Magnacca G, Catal. Today, 27(3-4), 497 (1996)
  51. Tsyganenko AA, Mardilovich PP, J. Chem. Soc.-Faraday Trans., 92, 4843 (1996)
  52. Onfroy T, Li WC, Schuth F, Knozinger H, Phys. Chem. Chem. Phys., 11, 3671 (2009)
  53. Krokidis X, Raybaud P, Gobichon AE, Rebours B, Euzen P, Toulhoat H, J. Phys. Chem. B, 105(22), 5121 (2001)
  54. Neyts EC, Plasma Chem. Plasma Process., 36(1), 185 (2016)
  55. Ambrico PF, Ambrico M, Schiavulli L, Ligonzo T, Augelli V, Appl. Phys. Lett., 94, 051501 (2009)
  56. Ambrico PF, Ambrico M, Colaianni A, Schiavulli L, Dilecce G, De Benedictis S, J. Phys. D-Appl. Phys., 43, 325201 (2010)
  57. Emeis CA, J. Catal., 141, 347 (1993)
  58. Rahmani S, Rezaei M, Meshkani F, J. Ind. Eng. Chem., 20(4), 1346 (2014)
  59. Li CP, Chen YW, Thermochim. Acta, 256(2), 457 (1995)
  60. Zielinski J, J. Catal., 76, 157 (1982)
  61. Bartholomew CH, Pannell RB, J. Catal., 65, 390 (1980)
  62. Zhu XL, Zhang YP, Liu CJ, Catal. Lett., 118(3-4), 306 (2007)
  63. Ronchi G, Machida M, J. Phys. Conf. Ser., 511, 012002 (2014)
  64. Burm KTAL, Contrib. Plasma Phys., 47, 177 (2007)
  65. Butterworth T, Elder R, Allen R, Chem. Eng. J., 293, 55 (2016)
  66. Chen MG, Mihalcioiu A, Takashima K, Mizuno A, Keping Y, 11th International Conference on Electrostatic Precipitation Hangzhou, 681 (2008).
  67. Wadell H, J. Geol., 43, 250 (1935)
  68. Ozahi E, Gundogdu MY, Carpinlioglu MO, Adv. Powder Technol., 19(4), 369 (2008)
  69. Li LX, Ma WM, Transp. Porous Media, 89(1), 35 (2011)
  70. Rushton A, Ward AS, Holdich RG, Solid.Liquid Filtration and Separation Technology, Wiley-VCH, 2000-587 pages.
  71. Pushnov AS, Chem. Pet. Eng., 42, 14 (2006)
  72. Puliyalil H, Jurkovic DL, Dasireddy VDBC, Likozar B, RSC Adv., 8, 27481 (2018)
  73. Hayashi N, Yamakawa T, Baba S, Vacuum, 80, 1299 (2006)
  74. Guo L, Ma XX, Xia YS, Xiang XF, Wu X, Fuel, 158, 843 (2015)
  75. Li Y, Liu CJ, Eliasson B, Wang Y, Energy Fuels, 16(4), 864 (2002)
  76. Zhang YP, Li Y, Wang Y, Liu CJ, Eliasson B, Fuel Process. Technol., 83(1-3), 101 (2003)
  77. Jury FA, Polaert I, Estel L, Pierella LB, Appl. Catal. A: Gen., 453, 92 (2013)
  78. Jurkovic DL, Pohar A, Dasireddy VDBC, Likozar B, Chem. Eng. Technol., 40, 1 (2017)