화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.71, 345-350, March, 2019
Nanohybrid electrodes of porous hollow SnO2 and graphene aerogel for lithium ion battery anodes
E-mail:
In this work, we present the nanohybrid electrode (termed as p-h-SnO2/GA) of porous hollow SnO2 (p-h-SnO2) integrated on the surface of graphene aerogel (GA) for anodes with large lithium storage capacity. Selective etching of Ni from Ni3Sn2 nanoparticles produces the porous hollow nanostructure of SnO2, which is important for providing the structural flexibility that can accommodate the volume change of SnO2 during the lithiation and delithiation processes. GA also serves as a buffer for the volume change of SnO2 and induces effective charge transports through its interconnected porous network structure. These combined advantages of p-h-SnO2 and GA enable a reversible Li storage capacity as high as 620 mAh g-1 with ~100% Coulombic efficiency at a specific current of 50 mA g-1 over 200 charge.discharge cycles and ~71% of rate-retention capability over the specific currents of 100 mA g-1.1 A g-1. It makes this nanohybrid electrodes an attractive candidate for high-performance lithium ion battery anode.
  1. Yao J, Shen X, Wang B, Liu H, Wang G, Electrochem. Commun., 11, 1849 (2009)
  2. Poizot P, Laruelle S, Grugeon S, Dupont L, Tarascon JM, Nature, 407, 496 (2000)
  3. Zhang M, Lei D, Yin X, Chen L, Li Q, Wang Y, Wang T, J. Mater. Chem., 20, 5538 (2010)
  4. Nuli Y, Zeng R, Zhang P, Guo ZP, Liu HK, J. Power Sources, 184(2), 456 (2008)
  5. Wang X, Wu XL, Guo YG, Zhong YT, Cao XQ, Ma Y, Yao JN, Adv. Funct. Mater., 20(10), 1680 (2010)
  6. Yang SB, Song HH, Yi HX, Liu WX, Zhang HJ, Chen XH, Electrochim. Acta, 55(2), 521 (2009)
  7. Idota Y, Kubota T, Matsufuji A, Maekawa Y, Miyasaka T, Science, 276, 1395 (2017)
  8. Tarascon JM, Armand M, Nature, 414, 359 (2001)
  9. Arico AS, Bruce P, Scrosati B, Tarascon JM, Van Schalkwijk W, Nat. Mater., 4(5), 366 (2005)
  10. Cabana J, Monconduit L, Larcher D, Palacin MR, Adv. Mater., 22(35), E170 (2010)
  11. Reddy MV, Rao GVS, Chowdari BVR, Chem. Rev., 113(7), 5364 (2013)
  12. Chen JS, Lou XW, Small, 9, 1877 (2013)
  13. Larcher D, Beattie S, Morcrette M, Edstrom K, Jumas JC, Tarascon JM, J. Mater. Chem., 17, 3759 (2007)
  14. Paek SM, Yoo E, Honma I, Nano Lett., 9, 72 (2009)
  15. Chen LB, Yin XM, Mei L, Li CC, Lei DN, Zhang M, Li QH, Xu Z, Xu CM, Wang TH, Nanotechnology, 23, 035402 (2012)
  16. Zhang N, Zhao Q, Han X, Yang J, J. Chen, Nanoscale, 6, 2827 (2014)
  17. Hu YY, Liu ZG, Nam KW, Borkiewicz OJ, Cheng J, Hua X, Dunstan MT, Yu XQ, Wiaderek KM, Du LS, Chapman KW, Chupas PJ, Yang XQ, Grey CP, Nat. Mater., 12(12), 1130 (2013)
  18. Kim HK, Park SH, Yoon SB, Lee CW, Jeong JH, Roh KC, Kim KB, Chem. Mater., 26, 4838 (2014)
  19. Lou XW, Zeng HC, Chem. Mater., 14, 4781 (2002)
  20. Kumar V, Kim JH, Pendyala C, Chernomordik B, Sunkara MK, J. Phys. Chem. C, 112, 1775 (2008)
  21. Duan JH, Yang SG, Liu HW, Gong JF, Huang HB, Zhao XN, Zhang R, Du YW, J. Am. Chem. Soc., 127(17), 6180 (2005)
  22. Wang ZY, Luan DY, Boey FYC, Lou XW, J. Am. Chem. Soc., 133(13), 4738 (2011)
  23. Choi J, Han SY, Jin J, Kim J, Park JH, Lee SM, Kim HJ, Son SU, J. Mater. Chem. A, 1, 8609 (2013)
  24. Kim S, Kim SK, Sun P, Oh N, Braun PV, Nano Lett., 17, 6893 (2017)
  25. Pham HD, Pham VH, Cuong TV, Nguyen-Phan TD, Chung JS, Shin EW, Kim S, Chem. Commun., 47, 9672 (2011)
  26. Guler MO, Cevher O, Cetinkaya T, Tocoglu U, Akbulut H, Int. J. Energy Res., 38, 487 (2013)
  27. Li S, Xie W, Wang S, Jiang X, Peng S, He D, J. Mater. Chem. A, 2, 17139 (2014)
  28. Zhou XS, Wan LJ, Guo YG, Adv. Mater., 25(15), 2152 (2013)
  29. Mishra M, Singh AP, Singh BP, Dhawan SK, RSC Adv., 4, 25904 (2014)
  30. Wei Z, Xuezhang X, Yiwen Z, Junpeng L, Jiayi Z, Meng L, Xiulin F, Chuntao W, Lixin C, Nanotechnology, 29, 105705 (2018)
  31. Yu X, Wu Q, Zhang H, Zeng G, Li W, Qian Y, Li Y, Yang G, Chen M, Materials, 11, 38 (2018)
  32. Onda A, Komatsu T, Yashima T, Phys. Chem. Chem. Phys., 2, 2999 (2000)
  33. Pithakratanayothin S, Tongsri R, Chaisuwan T, Wongkasemjit S, Catal. Sci. Technol., 7, 5413 (2017)
  34. Zhu Y, Guo H, Zhai H, Cao C, ACS Appl. Mater. Interfaces, 7, 2745 (2015)
  35. Demir-Cakan R, Hu YS, Antonietti M, Maier J, Titirici MM, Chem. Mater., 20, 1227 (2008)
  36. Wang Y, Huang ZX, Shi Y, Wong JI, Ding M, Yang HY, Sci. Rep., 5, 9164 (2015)
  37. Wu N, Du W, Gao X, Zhao L, Liu G, Liu X, Wu H, He YB, Nanoscale, 10, 11460 (2018)
  38. Zhu S, Dong X, Gao S, Jin X, Huang H, Qi M, Adv. Mater. Interfaces, 5, 170168 (2018)
  39. Lou XW, Deng D, Lee JY, Archer LA, Chem. Mater., 20, 6562 (2008)
  40. Zhang J, Zhu Y, Cao C, Butt FK, RSC Adv., 5, 58568 (2015)
  41. Jin YH, Min KM, Seo SD, Shim HW, Kim DW, J. Phys. Chem. C, 115, 22062 (2011)
  42. Wu P, Du N, Zhang H, Yu J, Yang D, J. Phys. Chem. C, 114, 22535 (2010)
  43. Li L, Kovalchuk A, Tour JM, Nano Res., 7, 1319 (2014)