화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.71, 270-276, March, 2019
Improved swelling behavior of Li ion batteries by microstructural engineering of anode
E-mail:
Swelling behavior of the graphite electrode hinders the increase in volumetric density of Li ion batteries as the free space in the cell is necessary to ensure battery safety by accommodating the volume change of the anode associated with Li ions. Here, we report a simple electrode microstructural engineering strategy to control swelling behavior of the anode by employing a two-step pressing process. Two-step pressing enables the uniform distribution of the pores throughout the electrode without cracking or pulverization of the active material. The anode prepared by a two-step pressing process under an optimized condition exhibits superior swelling behavior (4.47% swelling after 25 cycles) compared to that of the anode prepared with a one-step pressing process (5.00% swelling after 25 cycles). The electrochemical properties could be also further improved due to a uniform pore distribution and enhanced adhesion strength.
  1. Kang KS, Meng YS, Breger J, Grey CP, Ceder G, Science, 311, 977 (2006)
  2. Tarascon JM, Armand M, Nature, 414, 359 (2001)
  3. Bruce PG, Freunberger SA, Hardwick LJ, Tarascon JM, Nat. Mater., 11(1), 19 (2012)
  4. Bruce PG, Scrosati B, Tarascon JM, Angew. Chem.-Int. Edit., 47, 2930 (2008)
  5. Ellis BL, Lee KT, Nazar LF, Chem. Mater., 22, 691 (2010)
  6. Song T, Xia JL, Lee JH, Lee DH, Kwon MS, Choi JM, Wu J, Doo SK, Chang H, Park WI, Zang DS, Kim H, Huang YG, Hwang KC, Rogers JA, Paik U, Nano Lett., 10, 1710 (2010)
  7. Song T, Cheng HY, Choi H, Lee JH, Han H, Lee DH, Yoo DS, Kwon MS, Choi JM, Doo SG, Chang H, Xiao JL, Huang YG, Park WI, Chung YC, Kim H, Rogers JA, Paik U, Acs Nano, 6, 303 (2012)
  8. Song T, Jeon Y, Paik U, J. Electroceram., 32, 66 (2014)
  9. Li XL, Gu M, Hu SY, Kennard R, Yan PF, Chen XL, Wang CM, Sailor MJ, Zhang JG, Liu J, Nat. Commun., 5 (2014)
  10. Gong ZL, Yang Y, Energy Environ. Sci., 4, 3223 (2011)
  11. Dimov N, Kugino S, Yoshio M, Electrochim. Acta, 48(11), 1579 (2003)
  12. Singh M, Kaiser J, Hahn H, J. Electroanal. Chem., 782, 245 (2016)
  13. Zheng HH, Li J, Song XY, Liu G, Battaglia VS, Electrochim. Acta, 71, 258 (2012)
  14. Zheng HH, Liu G, Song XY, Ridgway P, Xun SD, Battaglia VS, J. Electrochem. Soc., 157(10), A1060 (2010)
  15. Mickelson L, Castro H, Switzer E, Friesen C, J. Electrochem. Soc., 161(14), A2121 (2014)
  16. Ohzuku T, Matoba N, Sawai K, J. Power Sources, 97, 73 (2001)
  17. Lee JH, Lee HM, Ahn S, J. Power Sources, 119, 833 (2003)
  18. Harris SJ, Deshpande RD, Qi Y, Dutta I, Cheng YT, J. Mater. Res., 25, 1433 (2010)
  19. Zhang NX, Tang HQ, Zhang LS, Trifonova A, J. Electrochem. Soc., 162(10), A2152 (2015)
  20. Zhang NX, Tang HQ, J. Power Sources, 218, 52 (2012)
  21. Hasin P, Alpuche-Aviles MA, Wu Y, J. Phys. Chem. C, 114, 15857 (2010)
  22. Kawashima Y, Katagiri G, Phys. Rev. B, 52, 10053 (1995)
  23. Tuinstra F, Koenig JL, J. Chem. Phys., 53, 1126 (1970)
  24. Vidano R, Fischbach DB, J. Am. Ceram. Soc., 61, 13 (1978)
  25. Ebner M, Marone F, Stampanoni M, Wood V, Science, 342(6159), 716 (2013)
  26. Taiwo OO, Finegan DP, Gelb J, Holzner C, Brett DJL, Shearing PR, Chem. Eng. Sci., 154, 27 (2016)
  27. Han H, Park H, Kil KC, Jeon Y, Ko Y, Lee C, Kim M, Cho CW, Kim K, Paik U, Song T, Electrochim. Acta, 166, 367 (2015)
  28. Lee BR, Oh ES, J. Phys. Chem. C, 117, 4404 (2013)
  29. Shin D, Park H, Paik U, Electrochem. Commun., 77, 103 (2017)
  30. Reimers JN, Dahn J, J. Electrochem. Soc., 139, 2091 (1992)