화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.71, 177-183, March, 2019
Bandgap tuned and oxygen vacant TiO2-x anode materials with enhanced electrochemical properties for lithium ion batteries
E-mail:
As a promising anode material, TiO2-x is prepared with a low bandgap by adding a zinc powder using a solvothermal reaction. It is homogeneous, spherical, and 30 nm in size, changing from anatase to rutile. It shows a high discharge capacity, 253.8 mAh g-1, after 50 cycles at 100 mA g-1 whereas the pristine TiO2 material delivers mere 81.1 mAh g-1. The improved electrochemical performance with cycling of the TiO2-x compared with the pristine TiO2 material is attributed to the presence of Ti3+and/or oxygen vacancies.
  1. Prakash A, Manikandan P, Ramesha K, Sathiya M, Tarascon J, Shukla A, Chem. Mater., 22, 2857 (2010)
  2. Li D, Shi D, Liu Z, Liu H, Guo Z, J. Nanopart. Res., 15, 1674 (2013)
  3. Jo YN, Prasanna K, Park SJ, Lee CW, Electrochim. Acta, 108, 32 (2013)
  4. Subburaj T, Prasanna K, Kim KJ, Ilango PR, Jo YN, Lee CW, J. Power Sources, 280, 23 (2015)
  5. Guo HJ, Li XH, Xie J, Wang ZX, Peng WJ, Sun QM, Energy Conv. Manag., 51(2), 247 (2010)
  6. Zajac W, Tarach M, Trenczek-Zajac A, Acta Mater., 140, 417 (2017)
  7. He C, Wu S, Zhao N, Shi C, Liu E, Li J, ACS Nano, 7, 4459 (2013)
  8. Nabais C, Schneider R, Willmann P, Billaud D, Energy Conv. Manag., 56, 32 (2012)
  9. Tian QH, Chen P, Zhang ZX, Yang L, J. Power Sources, 350, 49 (2017)
  10. Hu R, Ouyang Y, Chen D, Wang H, Chen Y, Zhu Z, et al., Acta Mater., 109, 248 (2016)
  11. Zuo Y, Wang G, Peng J, Li G, Ma Y, Yu F, et al., J Mater Chem A, 4, 2453 (2016)
  12. Chen Y, Ma XQ, Cui XL, Jiang ZY, J. Power Sources, 302, 233 (2016)
  13. Santhoshkumar P, Prasanna K, Sivagami IN, Jo YN, Kang SH, Lee CW, J. Alloy. Compd., 720, 300 (2017)
  14. Gnanamuthu RM, Jo YN, Lee CW, Curr. Appl. Phys., 13(7), 1454 (2013)
  15. Nguyen T, Halim M, Lee JK, Lee S, Acta Mater., 140, 290 (2017)
  16. Wang YF, Wu MY, Zhang WF, Electrochim. Acta, 53(27), 7863 (2008)
  17. Xu JW, Ha CH, Cao B, Zhang WF, Electrochim. Acta, 52(28), 8044 (2007)
  18. Wang JP, Bai Y, Wu MY, Yin J, Zhang WF, J. Power Sources, 191(2), 614 (2009)
  19. Di Lupo F, Tuel A, Mendez V, Francia C, Meligrana G, Bodoardo S, et al., Acta Mater., 69, 60 (2014)
  20. Zhang Y, Tang Y, Li W, Chen X, ChemNanoMat, 2, 764 (2016)
  21. Guler MO, Cevher O, Cetinkaya T, Tocoglu U, Akbulut H, Energy Conv. Manag., 72, 111 (2013)
  22. Zhang ZH, Zhou ZF, Nie S, Wang HH, Peng HR, Li GC, Chen KZ, J. Power Sources, 267, 388 (2014)
  23. Zou H, Yan K, Cong Y, Li X, Zhang J, Cui Z, et al., Res. Chem. Intermed., 43, 2891 (2017)
  24. Wei M, Lin T, Zhang W, Wu N, Chem. Eur. J., 21, 5059 (2017)
  25. Xu H, Chen J, Wang D, Xiao L, Guo X, Zhang Y, et al., Surf. Eng., 33, 559 (2017)
  26. Wang D, Choi D, Yang Z, Viswanathan VV, Nie Z, Wang C, et al., Chem. Mater., 20, 3435 (2008)
  27. Zhou T, Zheng Y, Gao H, Min S, Li S, Liu HK, et al., Adv. Sci., 2, 150002 (2015)
  28. Xin L, Liu Y, Li B, Zhou X, Shen H, Zhao W, et al., Sci. Rep., 4, 4479 (2014)
  29. Deng D, Kim MG, Lee JY, Cho J, Energy Environ. Sci., 2, 818 (2009)
  30. Liu XW, Zhou KB, Wang L, Wang BY, Li YD, J. Am. Chem. Soc., 131(9), 3140 (2009)
  31. Kong M, Li YZ, Chen X, Tian TT, Fang PF, Zheng F, Zhao XJ, J. Am. Chem. Soc., 133(41), 16414 (2011)
  32. Tobaldi D, Pullar R, Gualtieri A, Seabra M, Labrincha J, Acta Mater., 61, 5571 (2013)
  33. Bharti B, Kumar S, Lee HN, Kumar R, Sci. Rep., 6, 32355 (2016)
  34. Mohanty P, Mishra N, Choudhary R, Banerjee A, Shripathi T, Lalla N, et al., J. Phys. D-Appl. Phys., 45, 325301 (2012)
  35. Amano F, Nakata M, Yamamoto A, Tanaka T, J. Phys. Chem. C, 120, 6467 (2016)
  36. Chen CS, Chen TC, Chen CC, Lai YT, You JH, Chou TM, Chen CH, Lee JF, Langmuir, 28(26), 9996 (2012)
  37. Amano F, Nakata M, Appl. Catal. B: Environ., 158, 202 (2014)
  38. Wang J, Liu P, Fu X, Li Z, Han W, Wang X, Langmuir, 25, 1218 (2008)
  39. Thompson TL, Yates JT, Top. Catal., 35, 197 (2005)
  40. Jiang X, Zhang Y, Jiang J, Rong Y, Wang Y, Wu Y, et al., J. Phys. Chem. C, 116, 22619 (2012)
  41. Nowotny MK, Sheppard LR, Bak T, Nowotny J, J. Phys. Chem. C, 112, 5275 (2008)
  42. Pan X, Yang M, Fu X, Zhang N, Xu Y, Nanoscale, 5, 3601 (2013)
  43. Diebold U, Surf. Sci. Rep., 48, 53 (2003)
  44. Chen XB, Shen SH, Guo LJ, Mao SS, Chem. Rev., 110(11), 6503 (2010)
  45. Eder D, Kramer R, Phys. Chem. Chem. Phys., 5, 1314 (2003)
  46. Chen XB, Liu L, Yu PY, Mao SS, Science, 331(6018), 746 (2011)
  47. Buha J, J. Phys. D-Appl. Phys., 45, 385305 (2012)
  48. Hu YH, Angew. Chem.-Int. Edit., 51, 12410 (2012)
  49. Kayaci F, Vempati S, Ozgit-Akgun C, Donmez I, Biyikli N, Uyar T, Nanoscale, 6, 5735 (2014)
  50. Myung ST, Kikuchi M, Yoon CS, Yashiro H, Kim SJ, Sun YK, Scrosati B, Energy Environ. Sci., 6, 2609 (2013)
  51. Yang SB, Feng XL, Mullen K, Adv. Mater., 23(31), 3575 (2011)
  52. Li N, Liu G, Zhen C, Li F, Zhang LL, Cheng HM, Adv. Funct. Mater., 21(9), 1717 (2011)
  53. Jiang YM, Wang KX, Guo XX, Wei X, Wang JF, Chen JS, J. Power Sources, 214, 298 (2012)
  54. Bresser D, Paillard E, Binetti E, Krueger S, Striccoli M, Winter M, Passerini S, J. Power Sources, 206, 301 (2012)
  55. Cai Y, Wang HE, Huang SZ, Yuen MF, Cai HH, Wang C, Yu Y, Li Y, Zhang WJ, Su BL, Electrochim. Acta, 210, 206 (2016)
  56. Lui G, Li G, Wang X, Jiang G, Lin E, Fowler M, Yu A, Chen Z, Nano Energy, 24, 72 (2016)