화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.30, No.1, 29-33, February, 2019
반응 표면 분석법을 활용한 Acetylene 분리용 탄소기반 흡착제 개발
Development of Carbon-based Adsorbent for Acetylene Separation Using Response Surface Method
E-mail:
초록
탄소 nanotube, nanofiber 및 powder를 사용하여 아세틸렌 흡착실험을 수행한 결과 탄소 nanotube가 최적의 흡착성분을 보였다. 이를 지지체로 하여 Pd 농도 0~5%, 흡착온도 30~80 ℃ 및 C2H2/CO2의 비 3~10의 범위에서 3-요인, 3-수준의 Box-Behnken Design(BBD)으로 15개의 실험 조건을 설계했다. 이를 바탕으로 2차 다항식 회귀분석으로 운전조건에 따른 흡착량 예측식을 도출하였다. ANOVA 분석의 F-value 측정에 따라 흡착온도가 가장 큰 영향지수를 보였고 C2H2/CO2의 비는 가장 작은 영향지수 보이는 것으로 나타났다. 하지만 주요인자 간의 교호작용은 거의 없는 것으로 분석되었다. 흡착량 최적화 분석에서 Pd 농도 3.0%, 흡착온도 47 ℃ 및 C2H2/CO2 = 10인 조건에서 22.0 mmol/g이 흡착되는 것으로 계산되었고 실제 실험치에 95.9%의 정확도를 보였다.
Carbon nanotubes, nanofibers and powders were used for acetylene adsorption experiments. A total of 15 different experiments were designed by 3-level of Box-Behnken Design (BBD) with 3 factors including the Pd concentration of 0 to 5%, adsorption temperature of 30 to 80 ℃ and C2H2/CO2 of 3 to 10. Based on those data, a second order polynomial regression analysis was used to derive the adsorption amount prediction equation according to operating conditions. The adsorption temperature showed the greatest influence index while the C2H2/CO2 ratio showed the smallest according to the F-value measurement of the ANOVA analysis. However, there was little interaction between major factors. In the adsorption optimization analysis, a 22.0 mmol/g was adsorbed under the conditions of Pd concentration of 3.0%, adsorption temperature of 47 ℃ and C2H2/CO2 of 10 with 95.9% accuracy.
  1. Boese R, Kirchner MT, Billups WE, Norman LR, Angew. Chem.-Int. Edit., 42, 1961 (2003)
  2. Breck DW, Eversole WG, Milton RM, Reed TB, Thomas TL, J. Am. Chem. Soc., 78, 5963 (1956)
  3. Amaro AA, Seff K, J. Phys. Chem., 77, 906 (1973)
  4. Reid CR, Thomas KM, Langmuir, 15(9), 3206 (1999)
  5. Newalkar BL, Choudary NV, Kumar P, Komarneni S, Bhat TSG, Chem. Mater., 14, 304 (2002)
  6. Newalkar BL, Choudary NV, Turaga UT, Vijayalakshmi RP, Kumar P, Komarneni S, Bhat TSG, Microporous Mesoporous Mater., 65, 267 (2003)
  7. Jo DH, Cho KS, Park CG, Kim SH, Korean Chem. Eng. Res., 50(5), 885 (2012)
  8. Walpole RE, Myers RH, Myers SL, Ye KE, Probability and Statistics for Engineers and Scientists, 9th ed., 639-652, Prentice Hall, Boston, USA (2012).
  9. Mason RL, Gunst RF, Hess JL, Applications to Engineering and Science, 2nd ed., 568-597, Wiley-Interscience, New Jersey, USA (2003).
  10. Roosta M, Ghaedi M, Daneshfar A, Sahraei R, Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 122, 223 (2014)
  11. Ghaedi M, Alam Barakat E, Asfaram A, Mirtamizdoust B, Bazrafshan AA, Hajati S, RSC Adv., 5, 42376 (2015)
  12. Ferreira SLC, Bruns RE, Ferreira HS, Matos GD, David JM, Brandao GC, da Silva EGP, Portugal LA, dos Reis PS, Souza AS, dos Santos WNL, Anal. Chim. Acta, 597, 179 (2007)
  13. Kumar A, Prasad B, Mishra IM, J. Hazard. Mater., 150, 174 (2008)
  14. Samsonenko DG, Kim H, Sun Y, Kim GH, Lee HS, Kim K, Chem. Asian J., 2, 484 (2007)