화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.30, No.1, 11-16, February, 2019
수퍼커패시터용 니켈/트리메식 산 기반 금속-유기구조체 전극의 전기화학적 거동에 열처리 온도가 미치는 효과
Effect of Thermal Treatment Temperature on Electrochemical Behaviors of Ni/trimesic Acid-based Metal Organic Frameworks Electrodes for Supercapacitors
E-mail:
Ni-benzene-1,3,5-tricarboxylic acid based metal organic frameworks were successfully synthesized by hydrothermal method and thermally treated at various temperature. The electrochemical performance of composites was investigated using cyclic voltammetry, galvanostatic charge-discharge, and electrochemical impedance spectroscopy. Among all prepared composites, the samples annealed at 250 ℃ showed the highest capacitance with a low resistance, and high cycle stability. It was possible to obtain the low electrical resistance and high electric conductivity of the electrode by improved microstructure and morphology after the thermal annealing at 250 ℃. The samples annealed at 250 ℃ also displayed the maximum specific capacitance with a value of 953 Fg-1 at a current density of 0.66 A/g-1 in 6 M KOH electrolyte. Moreover, a 86.4% of the initial specific capacitance of the composite was maintained after 3,000 times charge-discharge cycle tests. Based on these properties, it can be concluded that the composite could be applied as potential supercapacitor electrode materials.
  1. Hoel M, Kverndokk S, Resour. Energy Econ., 18, 115 (1996)
  2. Shafiee S, Topal E, Energy Policy, 37(1), 181 (2009)
  3. El-Kady MF, Strong V, Dubin S, Kaner RB, Science, 335(6074), 1326 (2012)
  4. Miller JR, Simon P, Science, 321, 651 (2008)
  5. Simon P, Gogotsi Y, Nat. Mater., 7(11), 845 (2008)
  6. Balamurugan J, Thanh TD, Kim NH, Lee JH, J. Mater. Chem. A, 4, 9555 (2016)
  7. Kim J, Park SJ, Kim S, Carbon Lett., 14(1), 51 (2013)
  8. Kim J, Byun SC, Chung S, Kim S, Carbon Lett., 25, 14 (2018)
  9. Kim JE, Kim S, Res. Chem. Intermed., 40(7), 2519 (2014)
  10. Kim J, Kim Y, Park SJ, Jung Y, Kim S, J. Ind. Eng. Chem., 36, 139 (2016)
  11. Bao LH, Zang JF, Li XD, Nano Lett., 11(3), 1215 (2011)
  12. Yoo HM, Heo GY, Park SJ, Carbon Lett., 12(4), 252 (2011)
  13. Wang GP, Zhang L, Zang JJ, Chem. Soc. Rev., 41, 797 (2012)
  14. Lu XH, Zeng YX, Yu MH, Zhai T, Liang CL, Xie SL, Balogun MS, Tong YX, Adv. Mater., 26(19), 3148 (2014)
  15. Arico AS, Bruce P, Scrosati B, Tarascon JM, Van Schalkwijk W, Nat. Mater., 4(5), 366 (2005)
  16. Oh M, Kim S, Electrochim. Acta, 78, 279 (2012)
  17. Oh M, Park SJ, Jung Y, Kim S, Synth. Met., 162(7-8), 695 (2012)
  18. Israr F, Kim DK, Kim Y, Chun W, Quim. Nova, 39, 669 (2016)
  19. Kumagai H, Oka Y, Tanaka MA, Inoue K, Inorg. Chim. Acta., 332, 176 (2002)
  20. Israr F, Chun D, Kim Y, Kim DK, Ultrason. Sonochem., 31, 93 (2016)
  21. Kang L, Sun SX, Kong LB, Lang JW, Luo YC, Chin. Chem. Lett., 25, 957 (2014)
  22. Sun X, Wang GK, Hwang JY, Lian J, J. Mater. Chem., 21, 1658 (2011)
  23. Shanaj BR, John XR, J. Theor. Comput. Sci., 3, 149 (2016)
  24. Kim J, Kim Y, Park SJ, Jung Y, Kim S, J. Ind. Eng. Chem., 36, 139 (2016)
  25. Kotz R, Carlen M, Electrochim. Acta, 45(15-16), 2483 (2000)
  26. Jiang X, Ma Y, Li J, Huang W, J. Phys. Chem., 114(51), 22462 (2010)