화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.70, 363-371, February, 2019
Regenerated cellulose based carbon membranes for CO2 separation: Durability and aging under miscellaneous environments
E-mail:
Predictive models regarding the aging effect on membrane separation properties are required to estimate the membrane life time with acceptable permeability and selectivity for the respective application. The current article is reporting an insight into this topic regarding the aging of regenerated cellulose-based carbon hollow fibres (CHF) mounted in a membrane module when they were exposed to real biogas in three different fields. CHF were exposed to biogas for almost one year with H2S content extending from 0 to 2400 ppm, and gas permeation tests for single gases, N2, CO2, CH4, and O2 were analysed periodically at the membrane production facility. CHF storage methods under miscellaneous dry environments like air, vacuum, CO2, etc. were studied. The air flow through bore side of the CHF under controlled conditions had a regenerative effect on the membrane permeability, and the membrane performance was quite steady until after 150 days under laboratory environment.
  1. Koresh J, Soffer A, J. Chem. Soc.-Faraday Trans., 1, 2457 (1980)
  2. Saufi SM, Ismail AF, Carbon, 42(2), 241 (2004)
  3. Lagorsse S, Campo MC, Magalhaes FD, Mendes A, Carbon, 43(13), 2769 (2005)
  4. Campo MC, Lagorsse S, Magalhaes FD, Mendes A, J. Membr. Sci., 346(1), 26 (2010)
  5. Jones CW, Koros WJ, Ind. Eng. Chem. Res., 34(1), 158 (1995)
  6. Xu L, Rungta M, Hessler J, Qiu W, Brayden M, Martinez M, Barbay G, Koros WJ, Carbon, 80, 155 (2014)
  7. Wenz GB, Koros WJ, AIChE J., 63(2), 751 (2017)
  8. Menendez I, Fuertes AB, Carbon, 39(5), 733 (2001)
  9. Lagorsse S, Magalhaes FD, Mendes A, J. Membr. Sci., 310(1-2), 494 (2008)
  10. Okamoto K, Kawamura S, Yoshino M, Kita H, Hirayama Y, Tanihara N, Kusuki Y, Ind. Eng. Chem. Res., 38(11), 4424 (1999)
  11. Campo MC, Magalhaes FD, Mendes A, J. Membr. Sci., 350(1-2), 180 (2010)
  12. Anderson CJ, Tao W, Scholes CA, Stevens GW, Kentish SE, J. Membr. Sci., 378(1-2), 117 (2011)
  13. Haider S, Lindbrathen A, Lie JA, Andersen ICT, Hagg MB, Sep. Purif. Methods, 190, 177 (2018)
  14. Li W, Samarasinghe SASC, Bae TH, Ind. Eng. Chem., 67, 156 (2018)
  15. Zhang C, Wenz GB, Williams PJ, Mayne JM, Liu GP, Koros WJ, Ind. Eng. Chem. Res., 56(37), 10482 (2017)
  16. Lie JA, Hagg MB, J. Membr. Sci., 284(1-2), 79 (2006)
  17. Lie JA, Performance and Regeneration of Carbon Membranes for Biogas Upgrading, 2005.
  18. He X, Hagg MB, J. Membr. Sci., 390-391, 23 (2012)
  19. Hagg MB. Lie JA, Patent; Carbon Membranes, US20100162887 A1, 2010.
  20. Haider S, Lie JA, Lindbrathen A, Hagg MB, Membranes, 8(4), 97 (2018)
  21. Adachi K, Hu W, Matsumoto H, Ito K, Tanioka A, Polymer, 39(11), 2315 (1998)
  22. O’Brien KC, Koros WJ, Barbari TA, Sanders ES, J. Membr. Sci., 29(3), 229 (1986)
  23. Mulder M, Basic Principles of Membrane Technology, p. 564 1996.
  24. Mehta NC, Smith JM, Comings EW, Ind. Eng. Chem., 49(6), 986 (1957)
  25. Hayashi J, Yamamoto M, Kusakabe K, Morooka S, Ind. Eng. Chem. Res., 36(6), 2134 (1997)
  26. Ma XL, Williams S, Wei XT, Kniep J, Lin YS, Ind. Eng. Chem. Res., 54(40), 9824 (2015)
  27. Perry RH, Perry’s Chemical Engineers Handbook, 7th ed., McGraw-Hill, New York, 1997.
  28. Schell WJ, Houston CD, Energy Prog., 3, 96 (1983)