화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.70, 107-115, February, 2019
Flotation separation of quartz from apatite and surface forces in bubble.particle interactions: Role of pH and cationic amine collector contents
E-mail:,
Dodecylamine hydrochloride (DAHC) surfactant was used as a collector for effective apatite recovery through flotation separation in siliceous phosphate ore, wherein quartz is the main gangue mineral. The roles of pH and collector concentration were investigated, and the adsorption of the collector on the minerals and related properties were systematically studied by measuring zeta potential, contact angle, surface tension, and adsorption density. When the collector concentration was 5 x 10-5 M, 23.7% P2O5 grade was achieved for a conditioning time of 10 min. However, the separation performance of the flotation was lower at pH 7 regardless of the collector concentration. Thus, more collector molecules are adsorbed on the quartz surface than the apatite surface at pH 3 and 5 x 10-5M of collector, resulting in separation of quartz and apatite. The extended Derjaguin-Landau-Verwey-Overbeek (DLVO) theory, which considers the hydrophobic interaction energy, revealed that the improved flotation performance is attributed to a hydrophobic attractive force that is a consequence of the collector adsorption. Therefore, the results of flotation of artificially mixed minerals further revealed that optimization of the amine collector concentration and pH value can selectively separate quartz from apatite.
  1. Gaudin AM, Flotation, McGraw-Hill, 1957.
  2. Savassi ON, Alexander DJ, Franzidis JP, Manlapig EV, Miner. Eng., 11(3), 243 (1998)
  3. Yianatos J, Contreras F, Powder Technol., 197(3), 260 (2010)
  4. Rao SR, Surface Chemistry of Froth Flotation: Volume 1: Fundamentals, Springer Science & Business Media, 2013.
  5. Zhou F, Wang LX, Xu ZH, Ruan YY, Zhang ZY, Chi R, Colloids Surf. A: Physicochem. Eng. Asp., 513, 11 (2017)
  6. Choi J, Hong J, Park K, Kim G, Han Y, Kim S, Kim H, Mater. Trans., 55, 1344 (2014)
  7. Azadi M, Nguyen AV, Yakubov GE, Langmuir, 31(6), 1941 (2015)
  8. Laskowsk J, Kitchene JA, J. Colloid Interface Sci., 29, 670 (1969)
  9. Yoon RH, Ravishankar SA, J. Colloid Interface Sci., 166(1), 215 (1994)
  10. Yoon RH, Mao LQ, J. Colloid Interface Sci., 181(2), 613 (1996)
  11. Yang XL, Ai GH, Sep. Purif. Technol., 170, 272 (2016)
  12. Choi J, Choi SQ, Park K, Han Y, Kim H, Int. J. Miner. Process., 146, 38 (2016)
  13. Gharabaghi M, Irannajad M, Noaparast M, Hydrometallurgy, 103, 96 (2010)
  14. Houot R, Int. J. Miner. Process., 9, 353 (1982)
  15. Korea Resources Corporation (KORES), North’s Mineral Resources Statistics, (2017) [in Korean].
  16. Li GS, Cao YJ, Liu JT, Wang DP, Int. J. Miner. Process., 110, 6 (2012)
  17. Li XB, Zhang Q, Hou B, Ye JJ, Mao S, Li XH, Powder Technol., 318, 224 (2017)
  18. Sis H, Chander S, Miner. Eng., 16(7), 577 (2003)
  19. Han Y, Kwak D, Choi S, Shin C, Lee Y, Kim H, Minerals, 7, 66 (2017)
  20. Han Y, Kim H, Park J, Lee SH, Kim JY, Int. J. Hydrog. Energy, 37(19), 14240 (2012)
  21. Yoon RH, Ravishankar SA, J. Colloid Interface Sci., 166(1), 215 (1994)
  22. Yoon RH, Soni G, Huang KW, Park S, Pan L, Int. J. Miner. Process., 156, 43 (2016)
  23. Berry JD, Neeson MJ, Dagastine RR, Chan DYC, Tabor RF, J. Colloid Interface Sci., 454, 226 (2015)
  24. Han Y, Kim D, Hwang G, Lee B, Eom I, Kim PJ, Tong M, Kim H, Colloids Surf. A: Physicochem. Eng. Asp., 451, 7 (2014)
  25. Yoon RH, Int. J. Miner. Process., 58(1), 129 (2000)
  26. Han Y, Hwang G, Kim D, Bradford SA, Lee B, Eom I, Kim PJ, Choi SQ, Kim H, Water Res., 90, 247 (2016)
  27. Hogg R, Healy TW, Fuerstenau DW, Trans. Faraday Soc., 62, 1638 (1966)
  28. Israelachvili J, Pashley R, Nature, 300, 341 (1982)
  29. Pashley RM, McGuiggan PM, Ninham BW, Evans DF, Science, 229, 1088 (1985)
  30. Yoon RH, Ravishankar SA, J. Colloid Interface Sci., 179(2), 391 (1996)
  31. Claesson PM, Christenson HK, J. Phys. Chem., 92, 1650 (1988)
  32. Varbanov R, Forssberg E, Hallin M, Int. J. Miner. Process., 37, 27 (1993)
  33. Paulsen FG, Pan RG, Bousfield DW, Thompson EV, J. Colloid Interface Sci., 178(2), 400 (1996)
  34. Han Y, Hwang G, Park S, Gomez-Flores A, Jo E, Eom IC, Tong M, Kim HJ, Kim H, Environ. Sci. Nano, 4, 800 (2017)
  35. Churaev N, Derjaguin B, J. Colloid Interface Sci., 103, 542 (1985)
  36. Mao LQ, Yoon RH, Int. J. Miner. Process., 51(1), 171 (1997)
  37. Albijanic B, Ozdemir O, Hampton MA, Nguyen PT, Nguyen AV, Bradshaw D, Miner. Eng., 65, 187 (2014)
  38. Kirjavainen V, Lehto H, Heiskanen K, Miner. Eng., 16(11), 1193 (2003)
  39. Phillips J, Trans. Faraday Soc., 51, 561 (1955)
  40. Zhu YK, Free ML, Woollam R, Durnie W, Prog. Mater. Sci., 90, 159 (2017)
  41. Park J, Han Y, Kim H, Mater. Chem. Phys., 124(1), 510 (2010)
  42. Felicetti M, Piantino F, Coury J, Aguiar M, Braz. J. Chem. Eng., 25, 71 (2008)