화학공학소재연구정보센터
Polymer(Korea), Vol.43, No.1, 17-31, January, 2019
바이오매스 액화에 의한 폴리올 및 MCC 동시제조 및 최적화
Simultaneous Co-preparation of Polyol and MCC by the Liquefaction of a Biomass and Its Optimization
E-mail:
초록
폴리올 및 microcrystalline cellulose(MCC)의 동시제조를 위하여 바이오매스(톱밥, larix kaempferi) 액화 (liquefaction) 공정조건의 반응표면분석법에 따른 적정조건을 구축하기 위하여, 바이오매스 액화실험을 Run 1부터 16까지의 CCD(central composite design) 실험계획에 따라서 수행하였다. 바이오매스 액화온도(105-165 °C), 산촉매로서 sulfuric acid 농도(1-5%)와, 용매와 바이오매스의 비(SBR)(300-500%)의 각 바이오매스 액화공정 조건에서 바이오매스 액화실험을 각각 수행하였다. 본 연구에서 바이오매스 액화에 의한 MCC와 폴리올의 동시제조에서 최적화 조건은 Run 2로서, 최적화 액화조건은 액화온도, SBR 및 산촉매 농도가 각각 165 °C, 3:1, 1%이었다.
Lignocellulosic liquefaction of biomass (sawdust, larix kaempferi) was performed to prepare polyol and microcrystalline cellulose (MCC) simultaneously under various operating conditions such as 105-165 °C of liquefaction temperature, 1-5% of acid catalyst (sulfuric acid), 300-500% of solvent/biomass ratio (SBR). Biomass liquefaction scheme was designed to construct its optimal operating conditions according to central composite design (CCD) composed of 16 runs of experiments using response surface methodology. The optimal condition of liquefaction to prepare simultaneously MCC as well as polyol turned out to be Run 2 out of 16 runs of experiments, in which the liquefaction temperature, the SBR, the concentration of acid catalyst (sulfuric acid) were 165 °C, 300% and 1%, respectively.
  1. Yoo SH, Song HJ, Kim CK, Polym. Korea, 36(6), 721 (2012)
  2. Deka H, Karak N, Kalita RD, Buragohain AK, Polym. Degrad. Stabil., 95, 1509 (2010)
  3. Benhamou K, Kaddami H, Magnin A, Dufresne A, Ahmad A, Carbohydr. Polym., 122, 202 (2015)
  4. Zhang CQ, Wu HC, Kessler MR, Polymer, 69, 52 (2015)
  5. Lee JH, Lim JH, Kim KY, Kim KM, Polym. Korea, 38, 74 (2013)
  6. Glowinska E, Datta J, Cellulose, 23, 581 (2016)
  7. Wu QJ, Henriksson M, Liu X, Berglund LA, Biomacromolecules, 8(12), 3687 (2007)
  8. Zhang H, She Y, Zheng X, Chen H, Pu J, Chinese J. Polym. Sci., 32, 1363 (2014)
  9. Yang Y, Kim H, Lim KH, Ha K, Polym. Korea, 42, 1 (2018)
  10. Kim H, Park S, Yang Y, Lim KH, Ha KR, Polym. Korea, 40(6), 925 (2016)
  11. Kalita RD, Nath Y, Ochubiojo ME, Burangohain, Colloids Surf. B: Biointerfaces, 108, 85 (2013)
  12. Suvachitanont S, Ratanapan P, J. Chem. Eng., 7, 1136 (2013)
  13. Nassar MA, Shakankery MHE, Int. Res. J. Pure Appl. Chem., 4, 871 (2014)
  14. Horvath AL, J. Phys. Chem., 35, 77 (2006)
  15. Guo Z, Liu Y, Wang F, Xiao X, J. Cent. South Univ., 21, 1756 (2014)
  16. Hassan EBM, Shukry N, Ind. Crop. Prod., 27, 33 (2008)
  17. Hu SJ, Li YB, Bioresour. Technol., 161, 410 (2014)
  18. Yang LX, He Q, Havard P, Corscadden K, Xu C, Wang X, Bioresour. Technol., 237, 108 (2017)
  19. Feng J, Jiang J, Hse C, Yang Z, Wang K, Ye J, Xu J, Sustainable Energy Fuels, http://doi.org/10.1039/C7SE00579B (2018).
  20. Yao YG, Yoshioka M, Shiraishi N, J. Appl. Polym. Sci., 60(11), 1939 (1996)
  21. Kurimoto Y, Doi S, Tamura Y, Holzforschung, 53, 617 (1999)
  22. Kim DS, Sung YJ, J. Korea TAPPI, 48, 29 (2016)
  23. Oh SY, Yoo DI, Shin Y, Kim HC, Kim HY, Chung YS, Youk JH, Carbohydr. Res., 340, 2376 (2005)
  24. Leppanen K, Andersson S, Torkkeli M, Knaapila M, Kotelnikova N, Serimaa R, Cellulose, 16, 999 (2009)
  25. Awa K, Shinzawa H, Ozaki Y, AAPS PharmSciTech, 16, 865 (2015)
  26. Ciolacu D, Ciolacu F, Pola V, Cell. Chem. Technol., 45, 13 (2011)
  27. Pachuau L, Vanlalfakawma DC, Tripathi SK, Lalhlenmawia H, J. Appl. Pharm. Sci., 4, 87 (2014)