화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.29, No.6, 740-745, December, 2018
비정질 칼슘 포스페이트 나노 입자의 합성과 특성
Synthesis and Characterization of Amorphous Calcium Phosphate Nanoparticles
E-mail:
초록
본 연구에서는 비정질 칼슘 포스페이트(ACP) 나노 입자의 합성과 특성 분석을 진행하였다. 염화칼슘(calcium chloride(CaCl2))과 아데노신 인산나트륨(disodium adenosine triphosphate (Na2ATP)) 그리고 피트산 나트륨(sodium phytate) 첨가제를 열수 반응을 통해 상대적으로 단분산된 100 nm 크기 이하의 ACP 나노 입자를 성공적으로 합성하였고 나노 입자의 화학적 조성과 구조를 재료 분석을 통해 확인하였다. 피트산 나트륨 첨가제의 사용을 통해 얻은 ACP 나노 입자는 비정질성을 유지하고 결정성 하이드록시아파타이트(HAP)로의 전환을 방지하는 안정성이 향상되었음을 발견하였다. 본 연구를 통해 발견된 향상된 안정성을 가지는 ACP 나노 입자는 재생 의학 분야에서의 생체 적합 물질로의 응용에 중요한 잠재적 용도가 있을 것이라 사료된다.
The synthesis and characterization of amorphous calcium phosphate (ACP) nanoparticles were reported in this work. We show that relatively monodisperse ACP nanoparticles with a size of sub-100 nm can be prepared by a hydrothermal reaction of calcium chloride (CaCl2) and disodium adenosine triphosphate (Na2ATP) in the presence of sodium phytate as an additive. Their compositions and structures were confirmed using a series of material characterization techniques. Our results exhibit that ACP nanoparticles synthesized using sodium phytate enhanced the stability of maintaining their amorphous nature and prevented from a conversion to crystalline hydroxyapatite (HAP). ACP nanoparticles with the improved stability have potential uses in biomaterial applications in regenerative medicine.
  1. Qi C, Lin J, Fu LH, Huang P, Chem. Soc. Rev., 47, 357 (2018)
  2. Combes C, Cazalbou S, Rey C, Minerals, 6, 1 (2016)
  3. Jin WJ, Jiang SQ, Pan HH, Tang RK, Crystals, 8, 1 (2018)
  4. Wang HR, et al., Sci. Rep., 7, 40701 (2017)
  5. Beniash E, Metzler RA, Lam RSK, Gilbert PUPA, J. Struct. Biol., 166(2), 133 (2009)
  6. Dey A, Bomans PHH, Muller FA, Will J, Frederik PM, de With G, Sommerdijk NAJM, Nat. Mater., 9(12), 1010 (2010)
  7. Zhou H, Lee J, Acta Biomater., 7, 2769 (2011)
  8. Nagano M, Nakamura T, Kokubo T, Tanahashi M, Ogawa M, Biomaterials, 17, 1771 (1996)
  9. Boskey AL, J. Dent. Res., 76, 1433 (1997)
  10. Kim S, Ryu HS, Shin H, Jung HS, Hong KS, Mater. Chem. Phys., 91(2-3), 500 (2005)
  11. Wang CG, et al., Cryst. Growth Des., 9, 2620 (2009)
  12. Boskey AL, Posner AS, J. Phys. Chem., 77, 2313 (1973)
  13. Nancollas GH, Tomazic B, J. Phys. Chem., 78, 2218 (1974)
  14. Margolis HC, Kwak SY, Yamazaki H, Front. Physiol., 5:339 (2014).
  15. Jiang SQ, Jin W, Wang YN, Pan H, Sun Z, Tang R, RSC Adv., 7, 25497 (2017)
  16. Zyman Z, Rokhmistrov D, Glushko V, J. Cryst. Growth, 353(1), 5 (2012)
  17. Furedi-Milhofer H, Brecevic L, Purgaric B, Faraday Discuss. Chem. Soc., 61, 184 (1976)
  18. Jiang SQ, Pan HH, Chen Y, Xu XR, Tang RK, Faraday Discuss., 179, 451 (2015)
  19. Wuthier R, Eanes E, Calcif. Tissue Res., 19, 197 (1975)
  20. LeGeros RZ, et al., Key Eng. Mater., 284, 7 (2005)
  21. Blumenthal NC, Betts F, Posner AS, Calcif. Tissue Res., 23, 245 (1977)
  22. Chen Y, Gu WJ, Pan HH, Jiang SQ, Tang RK, Cryst. Eng. Comm., 16, 1864 (2014)
  23. Amjad Z, Phosphorus Res. Bull., 7, 45 (1997)
  24. Qi C, Zhu YJ, Zhao XY, Lu BQ, Tang QL, Zhao J, Chen F, Chemistry, 19, 981 (2013)
  25. Tanizawa Y, Suzuki T, J. Chem. Soc.-Faraday Trans., 91, 3499 (1995)
  26. Bar-Yosef Ofir P, Govrin-Lippman R, Garti N, Furedi-Milhofer H, Cryst. Growth Des., 4, 177 (2004)
  27. Root MJ, Calcif. Tissue Int., 47, 112 (1990)
  28. Qi C, Tang QL, Zhu YJ, Zhao XY, Chen F, Mater. Lett., 85, 71 (2012)
  29. Syberg F, Suveyzdis Y, Koetting C, Gerwert K, Hofmann E, J. Biol. Chem., 287, 23923 (2012)
  30. Liu M, Krasteva M, Barth A, Biophys. J., 89, 4352 (2005)
  31. Zhou ZF, et al., Biomaterials, 121, 1 (2017)
  32. He Z, Honeycutt CW, Zhang T, Bertsch PM, J. Environ. Qual., 35, 1319 (2006)