Macromolecular Research, Vol.26, No.13, 1212-1218, December, 2018
Synthesis and Characterization of Poly(ester amide)s Consisting of Poly(L-lactic acid) and Poly(butylene succinate) Segments with 2,2′-Bis(2-oxazoline) Chain Extending
E-mail:
An aliphatic polyester based poly(ester amide)s (PEA) consisting of poly (L-lactic acid) and poly(butylene succinate) was successfully prepared via chain extension reaction of poly(L-lactic acid)-dicarboxylic acid (PLLA-COOH) and poly(butylene succinate)-dicarboxylic acid (PBS-COOH) using 2,2′-bis(2-oxazoline) as a chain extender. PLLA-COOH was obtained by direct polycondensation of L-lactic acid in the presence of 1, 4-succinic acid. PBS-COOH was synthesized by condensation polymerization of 1,4-butylene glycol with excessive succinic acid. The structures of PLLA-COOH, PBS-COOH, and PEAs were characterized by fourier transform infrared (FTIR) and 1H nuclear magnetic resonance (1H NMR). The molar masses were determined by gel permeation chromatography (GPC). The thermal properties of PLLA-COOH, PBS-COOH, and PEAs were characterized by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The lattice parameters of PLLA-COOH, PBS-COOH, and PEAs were investigated by X-ray diffraction (XRD). Furthermore, The mechanical properties were characterized by tensile testing and notch Izod impact testing. The FTIR and 1H NMR results demonstrated the formation of PLLA-COOH, PBS-COOH, and PEAs. The GPC measurements showed that the molar masses of copolymer PEAs decreased with increasing PBS-COOH content. The TGA analysis confirmed that the introduction of PBS improved the thermal properties. DSC data indicated that the melting temperatures of the PEAs were lower than that of the prepolymers. The results of XRD suggested that the PLLA crystal structures was destroyed by the PBS units, and the crystallization of the PEAs mainly attributed to the PBS chain segments.The introduction of PBS units into the polymer structure improved the toughness of PLLA, which was detected in mechanical properties.
- Lunt J, Polym. Degrad. Stabil., 59, 145 (1998)
- Soares MJ, Dannecker PK, Vilela C, Bastos J, Meier MAR, Sousa AF, Eur. Polym. J., 90, 301 (2017)
- Zia KM, Noreen A, Zuber M, Tabasum S, Mujahid M, Int. J. Biol. Macromol., 82, 1028 (2016)
- Nagarajan V, Zhang K, Misra M, Mohanty AK, ACS Appl. Mater. Interfaces, 7, 11203 (2015)
- Sha L, Chen Z, Chen Z, Zhang A, Yang Z, Int. J. Polym. Sci., 2016, 1 (2016)
- Zhong W, Ge J, Gu Z, J. Appl. Polym. Sci., 74, 2546 (2015)
- Rasal RM, Janorkar AV, Hirt DE, Prog. Polym. Sci, 35, 338 (2010)
- Liu L, Yu J, Cheng L, Qu W, Compos. Pt. A-Appl. Sci. Manuf., 40, 669 (2009)
- Ray SS, Okamoto K, Okamoto M, Macromolecules, 36(7), 2355 (2003)
- Zhu N, Ye M, Shi D, Chen M, Macromol. Res., 25(2), 165 (2017)
- Supthanyakul R, Kaabbuathong N, Chirachanchai S, Polymer, 105, 1 (2016)
- Zhang X, Zhang Y, Polymer, 140, 374 (2016)
- Zeng JB, Li YD, Li WD, Yang KK, Wang XL, Wang YZ, Ind. Eng. Chem. Res., 48(4), 1706 (2009)
- Raquez JM, Habibi Y, Murariu M, Dubois P, Prog. Polym. Sci, 38, 1504 (2013)
- Gurunathan T, Nayak SK, Polym. Adv. Technol., 27, 1484 (2016)
- Pluta M, Bojda J, Piorkowska E, Murariu M, Bonnaud L, Dubois P, Polym. Test, 61, 35 (2017)
- Zhou Y, Lei L, Yang B, Li J, Ren J, Polym. Test, 60, 78 (2017)
- Ajioka M, Enomoto K, Suzuki K, J. Environ. Polym. Degrad., 3, 225 (1995)
- Sedlarik V, Kucharczyk P, Kasparkova V, Drbohlav J, Salakova A, Saha P, J. Appl. Polym. Sci., 116(3), 1597 (2010)
- Gao Q, Lan P, Shao H, Polym. J., 34, 786 (2002)
- Chuma A, Horn HW, Swope WC, Pratt RC, Zhang L, Lohmeijer BGG, Wade CG, Waymouth RM, Hedrick JL, Rice JE, J. Am. Chem. Soc., 130(21), 6749 (2008)
- Ryner M, Kajsa SA, Albertsson CA, Macromolecules, 34(12), 3877 (2010)
- And MS, Sodergard A, Macromolecules, 32, 6412 (2013)
- Zhao Y, Shuai X, Chuanfu CA, Chem. Mater., 15, 2836 (2003)
- Eguiburu JL, Berridi MJ, Sanroman J, Polymer, 36(1), 173 (1995)
- Goffin AL, Duquesne E, Moins S, Alexandre M, Dubois P, Eur. Polym. J., 43, 4103 (2007)
- Ju M, Gong F, Cheng S, Gao Y, Int. J. Polym. Sci., 2011, 1 (2011)
- Dai J, Bai H, Liu Z, Chen L, Zhang Q, Fu Q, RSC Adv., 6, 17008 (2016)
- Lu X, Tang L, Wang L, Zhao J, Li D, Wu Z, Xiao P, Polym. Test, 54, 90 (2016)
- Ouhib R, Renault B, Mouaziz H, Nouvel C, Dellacherie E, Six JL, Carbohydr. Polym., 77, 32 (2009)
- Kim KW, Woo SI, Macromol. Chem. Phys., 203, 2245 (2002)
- Moon SI, Lee CW, Taniguchi I, Miyamoto M, Kimura Y, Polymer, 42(11), 5059 (2001)
- Lee CM, Kim HS, Yoon JS, J. Appl. Polym. Sci., 95(5), 1116 (2005)
- Song YP, Wang DY, Wang XL, Lin L, Wang YZ, Polym. Adv. Technol., 22, 2295 (2011)
- Ho CH, Wang CH, Lin CI, Lee YD, Polymer, 49(18), 3902 (2008)
- Corre YM, Maazouz A, Reignier J, Duchet J, Polym. Eng. Sci., 54(3), 616 (2014)
- Zhang R, Huang K, Hu S, Liu Q, Zhao X, Liu Y, Polym. Test, 63, 38 (2017)
- Moura I, Nogueira R, Bounor-Legare V, Machado AV, Mater. Chem. Phys., 134(1), 103 (2012)
- Tuominen J, Seppala JV, Macromolecules, 33(10), 3530 (2000)
- Liu SY, Li CG, Zhao JB, Zhang ZY, Yang WT, Polymer, 52(26), 6046 (2011)
- Ozlem S, Iskin B, Yilmaz G, Kukut M, Hacaloglu J, Yagci Y, Eur. Polym. J., 48, 1755 (2012)
- Sijbrandi NJ, Kimenai AJ, Mes EPC, Broos R, Bar G, Rosenthal M, Odarchenko Y, Ivanov DA, Dijkstra PJ, Feijen J, Macromolecules, 45(9), 3948 (2012)
- Ge ZS, Wang D, Zhou YM, Liu HW, Liu SY, Macromolecules, 42(8), 2903 (2009)
- Yokohara T, Yamaguchi M, Eur. Polym. J., 44, 677 (2008)
- Liu L, Yu J, Cheng L, Yang X, Polym. Degrad. Stabil., 94, 90 (2009)
- Li SL, Wu F, Yang Y, Wang YZ, Zeng JB, Polym. Adv. Technol., 26, 1003 (2015)
- Zhou J, Jiang Z, Wang Z, Zhang J, Li J, Li Y, Zhang J, Chen P, Gu Q, RSC Adv., 3, 18464 (2013)