Clean Technology, Vol.24, No.4, 357-364, December, 2018
거대조류 바이오매스로부터 생산된 바이오가스를 사용하는 연료전지 기반 열병합발전의 타당성 검토
Feasibility of Combined Heat and Power Plant based on Fuel Cells using Biogas from Macroalgal Biomass
E-mail:
초록
미세조류 및 거대조류 등 3세대 바이오매스로부터 바이오가스를 생산하는 연구는 다양한 규모의 실험을 통해 수행된 바 있다. 이 논문에서는 3세대 바이오매스 중 거대조류, 즉 해조류 바이오매스로부터 유래된 바이오가스를 이용하는 복합 열병합 발전의 상용화 가능성을 살펴보았다. 이를 위해 고체산화물 연료전지와 가스터빈, 그리고 유기랭킨사이클로 이루어진 산업스케일의 통합 열병합발전을 상용 공정모사기를 이용하여 설계, 모사하였고, 계산된 열 및 물질수지를 통해 장치의 가격을 추정하고 경제성을 분석하였다. 모사 결과 설계된 열병합발전 공정은 시간당 62.5톤의 건조 갈조류 원료로부터 생산된 36 톤의 바이오가스를 이용하여 68.4 MW의 전력을 생산한다. 이 결과를 토대로 다양한 시나리오에 대해 경제적으로 평가하고 균둥화 발전비용(levelized electricity cost, LEC)을 계산하였는데, SOFC의 수명이 5년, 스택 가격이 $225 kW-1일 때 LEC는 12.26 ¢ kWh-1로 기존의 고정 발전과 동등한 수준으로 나타났다.
Studies on the production of biogas from third generation biomass, such as micro- and macroalgae, have been conducted through experiments of various scales. In this paper, we investigated the feasibility of commercialization of integrated combined heat and power (CHP) production using biogas derived from macroalgae, i.e., seaweed biomass. For this purpose, an integrated CHP plant of industrial scale, consisting of solid oxide fuel cells, gas turbine and organic Rankine cycle, was designed and simulated using a commercial process simulator. The cost of each equipment in the plant was estimated through the calculated heat and mass balances from simulation and then the techno-economic analysis was performed. The designed integrated CHP process produces 68.4 MW of power using 36 ton h-1 of biogas from 62.5 ton h-1 (dry basis) of brown algae. Based on these results, various scenarios were evaluated economically and the levelized electricity cost (LEC) was calculated. When the lifetime of SOFC is 5 years and its stack price is $225 kW-1, the LEC was 12.26 ¢ kWh-1, which is comparable to the conventional fixed power generation.
- International Energy Outlook 2017, U.S. Energy Information Administration (https://www.eia.gov/outlooks/ieo/pdf/0484 (2017).pdf).
- Murphy JD, Drosg B, Allen E, Jerney J, Xia A, Herrmann C, A perspective on algal biogas, IEA Bioenergy pp. 1-38 (2015).
- Fasahati P, Saffron CM, Woo HC, Liu JJ, Energy Conv. Manag., 135, 297 (2017)
- Biogas and Fuel Cells Workshop Summary Report, National Renewable Energy Laboratory, Golden, CO, Report No. NREL/BK-5600-56523 (2013).
- Ormerod RM, Chem. Soc. Rev., 32, 17 (2003)
- Dietrich RU, Lindermeir A, Oelze J, Spieker C, Spitta C, Steffen M, ECS Trans., 35(1), 2669 (2011)
- Kim J, Sastri B, Conrad R, “Solid Oxide Fuel Cell R&D,” TechConnect Briefs, 2, 205-207 (2017). (https://briefs.techconnect.org/wp-content/volumes/TCB2017v2/pdf/1069.pdf).
- Solid Oxide Fuel Cells and Critical Materials: A Review of Implications, National Energy Technology Laboratory, Pittsburgh, PA, Report No. R102 06 04D1 (2011).
- Multiyear Research, Development and Demonstration Plan, Fuel Cell Technologies Office, Department of Energy (2017).
- Vora SD, Department of Energy Office of Fossil Energy’s Solid Oxide Fuel Cell (SOFC) Program, 17th Annual SOFC Workshop, Pittsburgh, PA, July 19-21 (2016).
- Arsalis A, J. Power Sources, 181(2), 313 (2008)
- Eveloy Valerie, Karunkeyoon Wirinya, Rodgers Peter, Al Alili Ali, Int. J. Hydrog. Energy, 41(31), 13843 (2016)
- Trendewicz AA, Braun RJ, J. Power Sources, 233, 380 (2013)
- Cozzolino R, Lombardi L, Tribioli L, Renew. Energy, 211, 781 (2017)
- Veyo SE, “The Westinghouse Solid Oxide Fuel Cell Program-A Status Report,” Washington, DC, 1996, pp. 1138-1143 vol. 2. (doi: 10.1109/IECEC.1996.553868)
- Zhang W, Croiset E, Douglas PL, Fowler MW, Entchev E, Energy Conv. Manag., 46(2), 181 (2005)
- Song C, Chem. Innov., 31(1), 22 (2001)
- Chiodo V, Galvagno A, Lanzini A, Papurello D, Urbani F, Santarelli M, Freni S, Energy Conv. Manag., 98, 252 (2015)
- Lee TS, Chung JN, Chen YC, Energy Conv. Manag., 52(10), 3214 (2011)
- Campanari S, J. Power Sources, 92(1-2), 26 (2001)
- Humbird D, Davis R, Tao L, Kinchin C, Hsu D, Aden A, Schoen P, Lukas J, Olthof B, Worley M, National Renewable Energy Laboratory (NREL), Golden, CO., (2011).
- Turton R, Bailie RC, Whiting WB, Shaeiwitz JA, Bhattacharyya D, Analysis, Synthesis, and Design of Chemical Processes, Fourth Edition, Prentice Hall (2012).
- Ghirardo F, Santin M, Traverso A, Massardo A, Int. J. Hydrog. Energy, 36(13), 8134 (2011)
- Hulse RJ, Basu RS, Singh RR, Thomas RHP, J. Chem. Eng. Data, 57(12), 3581 (2012)
- Prabhu E, Solar Trough Organic Rankine Electricity System (Stores) Stage 1: Power Plant Optimization and Economics. US National Renewable Energy Laboratory, Golden, CO, Technical Report No. NREL/SR-550-39433, 2006.
- EG & G Services (Firm). & National Energy Technology Laboratory (U.S.). Fuel Cell Handbook. National Energy Technology Laboratory (2004).
- EIA, Average Price of Electricity to Ultimate Customers by End-Use Sector (https://www.eia.gov/electricity/monthly/epm_table_grapher.php?t=epmt_5_6_a).