화학공학소재연구정보센터
Macromolecular Research, Vol.26, No.12, 1103-1107, December, 2018
Fundamental and Practical Limits of Achieving Artificial Magnetism and Effective Optical Medium by Using Self-Assembly of Metallic Colloidal Clusters
E-mail:
The self-assembly of metallic colloidal clusters (so called plasmonic metamolecules) has been viewed as a versatile, but highly effective approach for the materialization of the metamaterials exhibiting artificial magnetism at optical frequencies (including visible and near infrared (NIR) regimes). Indeed, several proofs of concepts of plasmonic metamolecules have been successfully demonstrated in both theoretical and experimental ways. Nevertheless, this self-assembly strategy has barely been used and still remains an underutilized method. For example, the self-assembly and optical utilization of the plasmonic metamolecules have been limited to the discrete unit of the structure; the materialization of effective optical medium made of plasmonic metamolecules is highly challenging. In this work, we theoretically exploited the practical limits of self-assembly technology for the fabrication of optical magnetic metamaterials.
  1. Lee YJ, Schade NB, Sun L, Fan JA, Bae DR, Mariscal MM, Lee G, Capasso F, Sacanna S, Manoharan VN, Yi GR, ACS Nano, 7, 11064 (2013)
  2. O'Brien MN, Jones MR, Brown KA, Mirkin CA, J. Am. Chem. Soc., 136(21), 7603 (2014)
  3. Lee J, Huh JH, Kim K, Lee S, Adv. Funct. Mater., 28, 170730 (2018)
  4. Huh JH, Lee J, Lee S, ACS Photonics, 5, 413 (2018)
  5. Lee S, Opt. Express, 23, 28170 (2015)
  6. Kim K, Yoo S, Huh JH, Park Q, Lee S, ACS Photonics, 4, 2298 (2017)
  7. Rockstuhl C, Lederer F, Etrich C, Pertsch T, Scharf T, Phys. Rev. Lett., 99, 017401 (2007)
  8. Vallecchi A, Albani M, Capolino F, Opt. Express, 19, 2754 (2011)
  9. Alu A, Salandrino A, Engheta N, Opt. Express, 14, 1557 (2006)
  10. Alu A, Engheta N, Opt. Express, 17, 5723 (2009)
  11. Urzhumov YA, Shvets G, Fan J, Capasso F, Brandl D, Nordlander P, Opt. Express, 15, 14129 (2007)
  12. Park KJ, Huh JH, Jung DW, Park JS, Choi GH, Lee G, Yoo PJ, Park HG, Yi GR, Lee S, Sci. Rep., 7, 6045 (2017)
  13. Muhlig S, Cunningham A, Scheeler S, Pacholski C, Burgi T, Rockstuhl C, Lederer F, ACS Nano, 5, 6586 (2011)
  14. Sheikholeslami SN, Alaeian H, Koh AL, Dionne JA, Nano Lett., 13, 4137 (2013)
  15. Fruhnert M, Muhlig S, Lederer F, Rockstuhl C, Phys. Rev. B, 89, 075408 (2014)
  16. Gomez-Grana S, Le Beulze A, Treguer-Delapierre M, Mornet S, Duguet E, et al., Mater. Horiz., 3, 596 (2016)
  17. Muhlig S, Rockstuhl C, Yannopapas V, Burgi T, Shalkevich N, Lederer F, Opt. Express, 19, 9607 (2011)
  18. Muhlig S, Cunningham A, Dintinger J, Scharf T, Burgi T, Lederer F, Rockstuhl C, Nanophotonics, 2, 211 (2013)
  19. Johnson PB, Christy RW, Phys. Rev. B, 6, 4370 (1972)
  20. Paniagua-Dominguez R, Yu YF, Miroshnichenko AE, et al., Nat. Commun., 7, 10362 (2016)
  21. Yoo S, Park QH, Opt. Express, 20, 16480 (2012)
  22. Pusey PN, van Megen W, Nature, 320, 340 (1986)
  23. Mortensen NA, Raza S, Wubs M, Søndergaard T, Bozhevolnyi SI, Nat. Commun., 5, 3809 (2014)
  24. Luk'yanchuk B, Zheludev NI, Maier SA, Halas NJ, Nordlander P, Giessen H, Chong CT, Nat. Mater., 9(9), 707 (2010)
  25. Shafiei F, Monticone F, Le KQ, Liu XX, Hartseld T, Alu A, Li XQ, Nat. Nanotechnol., 8(2), 95 (2013)