- Previous Article
- Next Article
- Table of Contents
Protein Expression and Purification, Vol.151, 106-112, 2018
Purification and characterization of the antibacterial peptidase lysostaphin from Staphylococcus simulans: Adverse influence of Zn2+ on bacteriolytic activity
Lysostaphin, a bacteriolytic toxin from Staphylococcus simulans, is a Zn2+-dependent endopeptidase that cleaves pentaglycine cross-bridges found in peptidoglycan of certain Staphylococci. Here, we have investigated a critical influence of Zn2+ ions on lysostaphin-induced bioactivity. Initially, we succeeded in producing a large amount with high purity of the 28-kDa His-tagged mature lysostaphin via soluble expression in Escherichia cob and subsequent purification via immobilized-Ni2+ affinity chromatography (IMAC). The purified monomeric bacteriocin exhibited concentration-dependent bioactivity against S. aureus and its methicillin-resistant strain through cell-wall hydrolysis rather than membrane perturbation. Following pre-incubation of the purified lysostaphin with exogenous Zn2+, a marked inhibition in staphylolytic activity was observed. When the premixture was exposed to 1,10-phenanthroline (PNT, a Zn2+-chelator), the adverse effect of the exogenous Zn2+ on bioactivity was greatly decreased. Conversely, lysostaphin pre-treated with excess PNT retained relatively high bioactivity, indicating ineffective chelation of PNT to detach the catalytic Zn2+ from the active site pocket. Structural analysis of the lysostaphin-catalytic domain together with amino acid sequence alignments of lysostaphin-like endopeptidases revealed a potential extraneous Zn2+-binding site found in close proximity to the Zn2+ -coordinating active site. Overall our results provide more insights into an adverse influence of exogenous Zn2+ ions on staphylolytic activity of the purified Zn2+-dependent endopeptidase lysostaphin, implicating the presence of an extraneous inhibitory metal binding site.
Keywords:Bacteriocin lysostaphin;Inhibitory metal-binding site;Staphylolytic activity;Zn2+ chelation;Zn2+-dependent endopeptidase