Langmuir, Vol.34, No.46, 13910-13923, 2018
Light-Induced Aggregation and Disaggregation of Stimuli-Responsive Latex Particles Depending on Spiropyran Concentration: Kinetics of Photochromism and Investigation of Reversible Photopatterning
Light-controlling the physical and chemical properties of smart polymers by using photochromic compounds has been an interesting research subject. Incorporation of spiropyran (SP) on the surface of particles can induce photoswitchable aggregation/disaggregation to stimuli-responsive colloids. Herein, we developed a novel class of stimuli-responsive latex particles bearing SP with different contents (0, 0.5, 1, 3, and 5 wt %) by semicontinuous emulsifier-free emulsion copolymerization, which is able to change the particle size by light-induced aggregation/disaggregation in response to ultraviolet (UV) irradiation and visible light. The scanning electron microscopy images revealed the spherical morphology of the latex particles, with the size in the range of 400-900 nm. Light-induced aggregation and disaggregation of stimuli-responsive latex particles were investigated by dynamic light scattering and also confirmed by variation of transmittance during UV illumination time using ultraviolet-visible spectroscopy. The range of the light-induced shift in the particle size is about 200-600 nm (depending on the concentration of SP), where the reduction of transmittance upon UV irradiation (and conversely upon visible light) confirms the ability of latex particles for displaying reversible photoswitchable aggregation/disaggregation and also light controlling the particle size. The kinetics of SP to merocyanine (MC) and MC to SP isomerizations were experimentally investigated and fitted by exponential equations. The photochromic latexes displayed remarkable photoswitchability and photofatigue resistant properties under alternating UV and visible light irradiation cycles. Additionally, these stimuli-responsive latexes displayed potential applications such as anticounterfeiting inks in erasable and rewritable writings on cellulosic papers for increasing safety in security documents.