- Previous Article
- Next Article
- Table of Contents
Journal of the Electrochemical Society, Vol.165, No.7, A1466-A1477, 2018
Flow Battery Molecular Reactant Stability Determined by Symmetric Cell Cycling Methods
We present an unbalanced compositionally-symmetric flow cell method for revealing and quantifying different mechanisms for capacity fade in redox flow batteries that are based on molecular energy storage. We utilize it, accompanied in some cases by a corresponding static-cell cycling method, to study capacity fade in cells comprising anthraquinone di-sulfonate, di-hydroxy anthraquinone, iron hexacyanide, methyl viologen, and bis-trimethylammoniopropyl viologen. In all cases the cycling capacity decay is reasonably consistent with exponential in time and is independent of the number of charge-discharge cycles imposed. By introducing pauses at various states of charge of the capacity-limiting side during cycling, we showthat in some cases the temporal fade time constant is dependent on the state of charge. These observations suggest that molecular lifetime is dominated by chemical rather than electrochemical mechanisms. These mechanisms include irrecoverable chemical decomposition and recoverable interactions with cell materials. We conclude with recommendations for cell cycling protocols for evaluating stability of single electrolytes. (c) The Author(s) 2018. Published by ECS. This is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives 4.0 License (CC BY-NC-ND, http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial reuse, distribution, and reproduction in any medium, provided the original work is not changed in any way and is properly cited. For permission for commercial reuse, please email: [email protected].