화학공학소재연구정보센터
Journal of Structural Biology, Vol.203, No.3, 185-194, 2018
Analytical symmetry detection in protein assemblies. II. Dihedral and cubic symmetries
Protein assemblies are often symmetric, as this organization has many advantages compared to individual proteins. Complex protein structures thus very often possess high-order symmetries. Detection and analysis of these symmetries has been a challenging problem and no efficient algorithms have been developed so far. This paper presents the extension of our cyclic symmetry detection method for higher-order symmetries with multiple symmetry axes. These include dihedral and cubic, i.e., tetrahedral, octahedral, and icosahedral, groups. Our method assesses the quality of a particular symmetry group and also determines all of its symmetry axes with a machine precision. The method comprises discrete and continuous optimization steps and is applicable to assemblies with multiple chains in the asymmetric subunits or to those with pseudo-symmetry. We implemented the method in C+ + and exhaustively tested it on all 51,358 symmetric assemblies from the Protein Data Bank (PDB). It allowed us to study structural organization of symmetric assemblies solved by X-ray crystallography, and also to assess the symmetry annotation in the PDB. For example, in 1.6% of the cases we detected a higher symmetry group compared to the PDB annotation, and we also detected several cases with incorrect annotation. The method is available at http://team.inria.fr/nano-d/software/ananas. The graphical user interface of the method built for the SAMSON platform is available at http://samson-connect.net.