화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.28, No.11, 671-679, November, 2018
산화아연 나노와이어의 압전거동에 대한 분석
Finite Element Analysis of the Piezoelectric Behavior of ZnO Nanowires
E-mail:
Finite element analyses are carried out to understand the piezoelectric behaviors of ZnO nanowires. Three different types of ZnO nanowires, with aspect ratios of 1:2. 1:31, and 1:57, are analyzed for uniaxial compression, pure bending, and buckling. Under the uniaxial compression with a strain of 1.0 × 10-4 as the reference state, it is predicted that all three types of nanowires develop the same magnitude of the piezoelectric fields, which suggests that longer nanowires exhibit higher piezoelectric potential. However, this prediction is not in agreement with the experimental results previously reported in the literature. Such discrepancy is understood when the piezoelectric behaviors under bending and buckling are considered. When only the strain field due to bending is present in bending or buckling, the antisymmetric nature of the through-thickness stain distribution indicates that two piezoelectric fields, the same in magnitude and opposite in sign, develop along the thickness direction, which cancels each other out, resulting in a zero net piezoelectric field. Once additional strain contribution due to axial deformation is super posed on the bending, such field cancelling is compensated for due to the axial component of thepiezoelectric field. Such numerical predictions seem to explain the reported experimental results while providing a guideline for the design of nanowire-based piezoelectric devices.
  1. Janotti A, Van de Walle CG, Rep. Prog. Phys., 72, 126501 (2009)
  2. Litton CW, Reynolds DC, Collins TC, Zinc Oxide Materials for Electronic and Optoelectronic Device Applications, 1st ed., p. 265, John Wiley & Sons, New York (2011).
  3. Ozgur U, Hofstetter D, Morkoc H, Proc. IEEE, 98, 1255 (2010)
  4. Djurisic AB, Ng AMC, Chen XY, Prog. Quant. Electr., 34, 191 (2010)
  5. Bagga S, Akhtar J, Mishra S, AIP Conf. Proc., 1989, 020004 (2018)
  6. Zhu R, Yang R, Synthesis and Characterization of Piezotronic Materials for Application in Strain/Stress Sensing, p. 39 Springer Nature, Cham, Switzerland (2018).
  7. Xu S, Qin Y, Xu C, Wei YG, Yang RS, Wang ZL, Nat. Nanotechnol., 5(5), 366 (2010)
  8. Lee HJ, Chung SY, Kim YS, Lee TI, Nano Energy, 38, 232 (2017)
  9. Kumar B, Lee KY, Park HK, Chae SJ, Lee YH, Kim SW, ACS Nano, 5, 4197 (2011)
  10. Hu YF, Lin L, Zhang Y, Wang ZL, Adv. Mater., 24(1), 110 (2012)
  11. Lin L, Hu Y, Xu C, Zhang Y, Zhang R, Wen X, Wang ZL, Nano Energy, 2, 75 (2013)
  12. Lee S, Bae SH, Lin L, Yang Y, Park C, Kim SW, Cha SN, Kim H, Park YJ, Wang ZL, Adv. Funct. Mater., 23(19), 2445 (2013)
  13. Liu C, Yu A, Peng M, Song M, Liu W, Zhang Y, Zhai J, J. Phys. Chem. C, 120, 6971 (2016)
  14. Li X, Chen Y, Kumar A, Mahmoud A, Nychka JA, Chung HJ, ACS Appl. Mater. Interfaces, 7, 20753 (2015)
  15. Zhang Y, Liu C, Liu J, Xiong J, Liu J, Zhang K, Liu Y, Peng M, Yu A, Zhang A, Zhang Y, Wang Z, Zhai J, Wang ZL, ACS Appl. Mater. Interfaces, 8, 1381 (2016)
  16. Son M, Jang H, Lee MS, Yoon TH, Lee BH, Lee W, Ham MH, Adv. Mater. Technol., 3, 170035 (2018)
  17. Serairi L, Yu D, Leprince-Wang Y, Phys. Status Solidi C, 13, 1 (2016)
  18. Asthana A, Ardakani HA, Yap YK, Yassar RS, J. Mater. Chem. C, 2, 3995 (2014)
  19. Gao Y, Wang ZL, Nano Lett., 7, 2499 (2007)
  20. Majidi C, Haataja M, Srolovitz DJ, Smart Mater. Struct., 19, 055027 (2010)
  21. ABAQUS 2017, Dassault Systemes, Velizy-Villacoublay, France (2016).
  22. de Jong M, Chen W, Geerlings H, Asta M, Persson KA, Sci. Data., 2, 150053 (2015)
  23. Oo WHH, Saraf LV, Engelhard MH, Shuttanandan V, Bergman L, Huso J, McCluskey MD, J. Appl. Phys., 105, 013715 (2009)
  24. Nakamura K, Higuchi S, Ohnuma T, J. Appl. Phys., 119, 114102 (2016)
  25. Hearn EJ, Mechanics of Materials Volume 2, p. 457, Butterworth-Heinemann, Oxford, England (1985).